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Introduction
• Single-rate systems:

Sampling rates at the input and at the output and 
all internal nodes are the same

• Multirate systems:
DSP systems with unequal sampling rates at 
various parts of the system

© 2007 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 13

3

Applications
• There are applications where the signal of a given 

sampling rate needs to be converted into an 
equivalent signal with a different sampling rate

• Sampling rates in some applications:
– Digital audio applications: 

• 32 kHz in broadcasting,
• 44,1 kHz in digital CD,
• 48 kHz in digital audio tape (DAT) 

– Composite video signals: 
• NTSC: 14,3181818 MHz 
• PAL: 17,734475 MHz

– Digital component video: 
• Luminance 13,5 MHz
• Color difference 6,75 MHz
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Multirate DSP Systems
• Down-sampler and up-sampler are the basic 

sampling rate alteration devices to achieve different 
sampling rates in multirate DSP systems

• Cascade connections of the basic sampling rate 
alteration devices and digital (lowpass) filters are 
used

• Down-sampling corresponds to decimation
• Up-sampling corresponds to interpolation
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Up-Sampling in Time-Domain
• In up-sampling by an integer factor L>1, 

L-1 equidistant zero-valued samples are inserted 
between two consecutive samples of the input 
sequence x[n]:
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Up-Sampling Process (L=3)
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Down-Sampling in Time-Domain
• Down-sampling operation by an integer factor M>1 on 

sequence x[n] consists of keeping every Mth sample 
of x[n] and removing M-1 in-between samples, 
generating an output sequence y[n]:

][nMx=Mx[n] y[n]

• Down-sampling results in a sequence y[n] whose 
sampling rate is (1/M)th of that of x[n]

© 2007 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 13

8

Down-Sampling Process (M=3)

© 2007 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 13

9

Building Blocks of Multirate Systems

The sampling rates are explicitly shown
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Simple Multirate System
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Frequency-Domain Characterization 
of Up-Sampling

• Consider a factor-of-2 up-sampler
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• In terms of the z-transform the input-output relation is
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Frequency-Domain Characterization
• In a similar manner, for the factor-of-L up-sampler

)()( L
u zXzX =

• Let us examine the above relation on the unit circle;
For z=ejω the above equation becomes

)()( Ljj
u eXeX ωω =

• The factor-of-L up-sampling results in L-fold 
repetition of the DTFT 
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Effects of Up-Sampling in the Frequency-Domain

Input 
spectrum

Output 
spectrum 
for L=2

• An additional ”image” of the input spectrum appears

Imaging
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Effects of Up-Sampling in the 
Frequency-Domain

• In the case of factor-of-L sampling rate expansion there will 
be L-1 additional images of the input spectrum in the 
baseband

• Thus, the spectrum X(ejω) of a bandlimited lowpass signal 
does not look like a low-frequency spectrum after up-
sampling 

• Lowpass filtering of the up-sampled signal xu[n] removes the 
images and “fills in” the zero-valued samples in xu[n] with 
interpolated sample values
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Frequency-Domain Characterization 
of Down-Sampling

• Applying z-transform to input-output relation of 
down-sampling
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• In order to express the right-hand side in terms of X(z), 
let us define an intermediate sequence xint[n]
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Frequency-Domain Characterization 
of Down-Sampling
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• This can be written in the form (Mitra (13.9-13.11))
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Effects of Down-Sampling in the 
Frequency-Domain

{ })()(
2
1)( 2/2/ ωωω jjj eXeXeY −+=The spectrum of y[n] is:

The plot of X(ejω/2)

The plot of X(-ejω/2)

Aliased spectrum 
due to down-
sampling

Spectrum of x[n]
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Effects of Down-Sampling in the 
Frequency-Domain

• Aliasing due to a factor-of-M down-sampling is absent 
if and only if the signal x[n] is bandlimited to +π/M



T-61.3010 Digital Signal Processing 
and Filtering

11.1.2007

Mitra 3rd Edition: Chapter 13;                    
© 2007 Olli Simula 4

© 2007 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 13

19

Frequency-Domain Characterization 
of Down-Sampling

• In down-sampling the spectrum Y(ejω) is a sum of M 
uniformly shifted and stretched versions X(ejω) of and 
then scaled by 1/M
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Example: Down-Sampling Factor of M=2
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Example: Down-Sampling Factor of M=3
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Cascade Equivalences
• Complex multirate systems consist of the basic 

sampling rate alteration devices and LTI digital filters
• In many applications, these devices appear in 

cascade connection
• Computationally efficient structures are often 

obtained by interchanging the order of cascaded 
blocks

• Specific cascade connections and their equivalences 
are investigated

• Basic sampling rate alteration devices can be used 
for integer factors only
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Cascade Equivalences
• Fractional change in the sampling rate can be 

implemented with a cascade of down-sampler and 
up-sampler

• Under which conditions the order of the cascaded 
blocks can be interchanged with no change in the 
input-output relation ?
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Cascade Equivalences

• The structure of the sampling rate alteration devices 
can be changed in order to achieve more efficient 
implementations
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Filters in Multirate Systems
• The sampling rate of a critically sampled discrete-

time system cannot be reduced without aliasing
• Before down-sampling the bandwidth of critically 

sampled signal must be reduced by lowpass filtering
• Similarly, the zero-valued samples introduced by an 

up-sampler must be interpolated to more appropriate 
values for an effective sampling rate increase

• Interpolation can be achieved by lowpass filtering

Lowpass filters are needed 
in multirate systems
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Filters in Multirate Systems
• In up-sampling, a lowpass filter is used after the up-

sampler to remove the unwanted images of the 
spectrum  

• In down-sampling, a lowpass filter is used before the 
down-sampler to reduce the frequency band in order 
to avoid aliasing 

Decimation filter

Interpolation filter
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Interpolation Filter Specifications
• The Fourier transforms of the xa(t) and x[n] are related 

as
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• Since the sampling is done at the Nyquist rate, there 
is no overlap in the spectra of Xa(jω/T0)

• If the sampling rate is much higher, T= T0/L, yielding , 
its Fourier transform Y(ejω) is related to Xa(jΩ)
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Interpolation Filter
• If x[n] is passed through a factor-of-L up-sampler generating 

xu[n] the relation between Xu(ejω) and X(ejω) is given by

)()( Ljj
u eXeX ωω =

• If xu[n] is passed through an ideal lowpass filter with a cutoff 
frequency at π/L and gain L, the output of the filter is precisely 
y[n]

• In practice, a transition band is provided to ensure the 
realizability and stability of the lowpass interpolation filter H(z)

• The desired lowpass filter should have a stopband edge at 
ωs=π/L and passband edge ωp close to ωs to reduce the 
distortion of the spectrum of the signal x[n]
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Filter Specifications
• If ωc denoted the highest frequency that need to be 

preserved in the signal to be interpolated, the passband
edge ωp of the lowpass filter should be at ωp= ωc /L 

• Summarizing:
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• In a similar manner, the specifications for the lowpass
decimation filter can be developed
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where ωc is the highest frequency needed to be preserved 
in the decimated signal 
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Interpolation in Frequency Domain (L=2)

Spectrum of the input 
signal x[n]

Spectrum of the 
interpolator output v[n]:

)()( 2ωω jj eXeV =

The spectrum of interpolator 
output is obtained by 
filtering v[n], i.e., removing 
the images from the 
spectrum 
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Decimation in Frequency Domain (M=2)
Spectrum of the input signal x[n]
and the frequency response of 
the decimation filter

Decimator output without 
aliasing

Passband edge
Stopband edge

Without filtering the spectrum 
of decimator output is aliased 
version of x[n], i.e., the two 
components 

are overlapping
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Filters for Fractional Sampling rate Alteration
• A fractional change in the sampling rate is achieved by 

cascading a factor-of-M with a factor-of-L interpolator
• The cascade is equivalent to

– A decimator with a decimation factor of M/L

or
– An interpolator with an interpolation factor of L/M
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Filters for Fractional Sampling rate Alteration

• The two filters are in cascade are both lowpass filters
• Thus, only the one with lower stopband frequency is 

needed

• The stopband cutoff frequency of the lowpass filter
H(z) is
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Computational Requirements
• The interpolation and decimation filters can be 

designed either as FIR or IIR filters
• FIR filters are usually preferred because interpolation 

introduces several zero-valued samples which need 
not be “multiplied” by FIR filter coefficients

• Example: Sampling rate change by a factor 2/3

zero-valued
samples

coefficients
needed in true
multiplications
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Halfband Filters
• For the sampling rate change by a factor-of-2 (L=2 or 

M=2), the appropriate lowpass filter is a halfband filter

• The periodic frequency response of the halfband filter is 
an approximation to a square wave in the frequency 
domain 

• The corresponding (noncausal) Fourier series h[n]
equals zero for n even (except n=0) and falls off 
approximately as 1/n for n odd
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Computational Efficiency of the 
Halfband Filters

• The corresponding (noncausal) Fourier series h[n]
equals zero for n even (except n=0) and falls off 
approximately as 1/n for n odd

• If the filter is designed to preserve the odd symmetry of 
the passband and the stopband, the coefficients h[n] for 
n even will remain zero

• The multiplication rate is reduced by a factor of almost 
two

• The odd symmetry of H’(ejω) about π/2 can be 
preserved by the FIR design techniques



T-61.3010 Digital Signal Processing 
and Filtering

11.1.2007

Mitra 3rd Edition: Chapter 13;                    
© 2007 Olli Simula 7

© 2007 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 13

37

Narrowband Filters
• For very narrowband filters (L>>1 or M<<1) efficient 

sampling rate changes can be implemented in several 
stages

• For example, interpolation with a factor-of-4 can be be 
done in two stages with a factor-of-2 interpolators
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Two-Stage Interpolation
• Interpolation with a 

factor-of-4

• Interpolation filter
designed with a 
sampling frequency
4Ωs

• Two stages: 
• H1(ejω) designed

with a sampling
frequency 2Ωs

• H2(ejω) designed
with a sampling
frequency 4Ωs
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Narrowband Filters
• Decimation with a factor-of-4 can be be done in two 

stages with a factor-of-2 interpolators
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Two-Stage Decimation
• M=4:

decimation filter
designed with a 
sampling frequency
4Ωs

• Two stages for M=4: 
• H1(ejω) reduces the 

bandwidth to Ωs/2
• H2(ejω) operating at the 

sampling frequency
Ωs/2 reduces the 
bandwith further to  
Ωs/4 

© 2007 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 13

41

Narrowband Lowpass Filters
• Narrowband lowpass filters can be implemented by 

multistage decimation and interpolation

• If K is highly composite number the decimation and 
interpolation can be performed in many stages
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Narrowband Bandpass Filters
• The center frequency ω0 can be translated to dc by 

modulating the input signal by e-jω0 and by translating 
the lowpass filtered signal back to ω0



T-61.3010 Digital Signal Processing 
and Filtering

11.1.2007

Mitra 3rd Edition: Chapter 13;                    
© 2007 Olli Simula 8

© 2007 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 13

43

The Polyphase Decomposition
• A single stage decimator or interpolator employing FIR 

filters can be computationally efficient since the 
necessary multiplications are required to compute the 
output samples can be carried out only when needed

• The computational requirements can be further 
decreased by using multistage designs

• Additional reduction in the computational complexity is 
possible by realizing the FIR filters using the polyphase
decomposition

© 2007 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 13

44

The Decomposition
• Consider an arbitrary sequence {x[n]} with a z-transform 

X(z):
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• The subsequences {xk[n]} are called the polyphase
components of the parent sequence {x[n]}

• The functions Xk(z) given by the z-transforms of {xk[n]}, are 
called the polyphase components of X(z)
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The Decomposition
• The relation between the subsequences {xk[n]} and the 

original sequence x[n] is given by
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• X(z) can be written in matrix form as
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Structural Interpretation of the 
Polyphase Decomposition
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Polyphase Realization of FIR Filters

General polyphase decomposition:

Example:

Parallel realization of an 
FIR filter using the 
polyphase decomposition
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FIR Filter Structures Based on the 
Polyphase Decomposition

• Consider an M-branch polyphase decomposition of 
H(z) given by
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Type I polyphase realization Transpose structure
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FIR Filter Structures Based on the 
Polyphase Decomposition

• Alternative representation of the transpose structure 
of the Type I polyphase decomposition is obtained 
using the notation
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• The corresponding 
polyphase decomposition 
is given as
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Computationally Efficient 
Interpolator and Decimator Structures

• Consider the use of the 
polyphase decomposition in 
the realization of the 
decimation filter

• If the lowpass filter is realized 
as a Type I polyphase
decomposition the decimator 
structure is as shown on the 
right:
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Computationally Efficient 
Interpolator and Decimator Structures
• Using the cascade 

equivalence #1 for 
decimation

• The structure reduces to a 
computationally more 
efficient structure:

≡
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Cascade Multirate Structure

• Expressing the transfer function H(z) in terms of its L-
term Type I polyphase form:

• The structure is equivalent to the time-invariant 
digital filter where E0(z) is the zeroth polyphase term
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