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Multirate Digital
Signal Processing
Fundamentals

Introduction

« Single-rate systems:

Sampling rates at the input and at the output and
all internal nodes are the same

¢ Multirate systems:

DSP systems with unequal sampling rates at
various parts of the system
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Applications

« There are applications where the signal of a given
sampling rate needs to be converted into an
equivalent signal with a different sampling rate

« Sampling rates in some applications:

— Digital audio applications:

¢ 32 kHz in broadcasting,

« 44,1 kHz in digital CD,

« 48 kHz in digital audio tape (DAT)
— Composite video signals:

« NTSC: 14,3181818 MHz

* PAL: 17,734475 MHz

— Digital component video:
¢ Luminance 13,5 MHz
« Color difference 6,75 MHz

© 2007 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 13

Multirate DSP Systems

¢ Down-sampler and up-sampler are the basic
sampling rate alteration devices to achieve different
sampling rates in multirate DSP systems

« Cascade connections of the basic sampling rate
alteration devices and digital (lowpass) filters are
used

« Down-sampling corresponds to decimation

¢ Up-sampling corresponds to interpolation
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Up-Sampling in Time-Domain

« In up-sampling by an integer factor L>1,
L-1 equidistant zero-valued samples are inserted
between two consecutive samples of the input
sequence x[n]:

x[n/L], n=0, £L, +2L,...,
Xu[n]:{

0, otherwise
i —— L xn]
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Up-Sampling Process (L=3)

Input Sequence
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Down-Sampling Process (M=3)

Input Sequence.

Down-Sampling in Time-Domain

« Down-sampling operation by an integer factor M>1 on
sequence x[n] consists of keeping every Mth sample
of x[n] and removing M-1 in-between samples,
generating an output sequence y[n]:

Ampltude

o 5 6 15 20 25 a0 3 4 45 80
Time indexn

» Down-sampling results in a sequence y[n] whose
sampling rate is (1/M)th of that of x[n]
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Building Blocks of Multirate Systems Simple Multirate System

x{n]= x,(nT) yln] = x,(nMT)
Input sampling Output sampling
1

frequency = Fp -7

yin]

o1

Y I M
frequency = F. T
n: 0 1 2 3 4 5 6 7 8
x[n]:  x(0] x(1] x[2] =x[3] x[4] =x[5] «x[6] «x[7] x[8}

x (nT/L), n=0=xL,x2L,...
xln]= x(nT) xu[n]-{“ otherwise —>  un]: x(0] x[2] x[4] x[6] x[8] x[10] x[12] x[14] x[16]

0

. > —>  wln]: x[-1] x[1] x[3] x[5] =x[7] x[9] =x[11] =x[13] x[15]
‘“P“‘samp"“% Output sampling — winl: xf0] 0 x(2] O x4 0 x6] 0  x[8]
¢ wFl=LF, =, — wn]: x-1] 0 1] 0 x3 0 5] 0 7]
frequency = Fr == frequency = Fr = 27 =7 wln—11: 0 x0] 0 x2 0 x4 0 x6 0

— Il x[-1] x[0] x[1] x[2) x[3] x[4] x[5]1 x[6] x[7]

> yInl=v,[n-1]+w,[n]=x[n-1]

© 2007 Olli Simula T-61.3010 Digital Signal Processing; 10
Mitra 3rd Edition: Chapter 13

The sampling rates are explicitly shown
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Frequency-Domain Characterization
of Up-Sampling
» Consider a factor-of-2 up-sampler

x[n/2], n=0, £2, +4,..,
x,[n]= :
0, otherwise

* In terms of the z-transform the input-output relation is

o

X,(2) = ixu[n]z’n =>'x[n/2Jz"

n=—x
n even

= i:x[m]z’zm =X (z%)
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Frequency-Domain Characterization
« In a similar manner, for the factor-of-L up-sampler
X,(2)=X(z")

¢ Let us examine the above relation on the unit circle;
For z=ei» the above equation becomes

X, (") =X (e'")

» The factor-of-L up-sampling results in L-fold
repetition of the DTFT
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. : Effects of Up-Sampling in the
Effects of Up-Sampling in the Frequency-Domain .
Frequency-Domain

P

Input « In the case of factor-of-L sampling rate expansion there will

/\ /—' /—\ F spectrum be L-1 additional images of the input spectrum in the
1 B baseband

« Thus, the spectrum X(ei“) of a bandlimited lowpass signal

does not look like a low-frequency spectrum after up-

H e Output i
spectrum sampiing -
AV VAV VAV for L=2 N /MTA T
» An additional "image” of the input spectrum appears I A ’
 Lowpass filtering of the up-sampled signal x [n] removes the
|:'> Imaging images and “fills in” the zero-valued samples in x [n] with
interpolated sample values
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Frequency-Domain Characterization Frequency-Domain Characterization
of Down-Sampling of Down-Sampling

* Applying z-transform to input-output relation of _N BN -n

down-sampling Y(2) n:Z;CX['V”‘]Z n;X.nt[Mn]Z

Y(Z):n:zmx[nM]an _ zxinl[Mk]Zik/M =X, (2"™)
k=—o0

« In order to express the right-hand side in terms of X(z), « This can be written in the form (witra (13.9-13.11))

let us define an intermediate sequence X;[n]

M-1
x[n], n=0, M, £2M, .., Y(z):LZX(z“MW,\;k), whereWw,, =e12*'™
X [N] = . M &
0, otherwise
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Effects of Down-Sampling in the Effects of Down-Sampling in the
Frequency-Domain Frequency-Domain

« Aliasing due to a factor-of-M down-sampling is absent

1
The spectrum of y[n] is: (™) =§{X (&) + X (~e""%)}
if and only if the signal x[n] is bandlimited to +r/M

Xt

/—\ /_r\ Spectrum of x[n]

~ A — The plot of X(ei®?2)
TN e 4 The plot of X(-ei2)
21’y "
Aliased spectrum
due to down- “
— : sampling [t ofhimion i ey ot lsin e of g
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Frequency-Domain Characterization Example: Down-Sampling Factor of M=2
of Down-Sampling

+ In down-sampling the spectrum Y(ei®) is a sum of M
uniformly shifted and stretched versions X(ei“) of and
then scaled by 1/M

Input Spectrum

Magritude

4

(0-27K) PO \

: 18 . y
YE)==>X@Ee M) e e e er e e o
M= v
. r—
goo .
i 2
02 L i
",_ a1 02 o3 o4 [ (1] 3] [T s 1 or
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Example: Down-Sampling Factor of M=3 Cascade Equwalences
1 | s ‘ ¢ Complex multirate systems consist of the basic
o sampling rate alteration devices and LTI digital filters
\ * In many applications, these devices appear in
i ] cascade connection
02 i\ . . .
L « Computationally efficient structures are often
obtained by interchanging the order of cascaded
— e blocks
» Specific cascade connections and their equivalences
7 7 are investigated
B Lo « Basic sampling rate alteration devices can be used
T _ for integer factors only
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Cascade Equivalences Cascade Equivalences

« Fractional change in the sampling rate can be

. ; N Anl T vln] ylnl x[n] v, [n] Yylnl
Il:?fg;m%rlgfd with a cascade of down-sampler and - 2

« Under which conditions the order of the cascaded @

blocks can be interchanged with no change in the anl ] ned ] ylnl yz["]
input-output relation ?

(b}
Al il g ; dnl el Bl |:|Cascade equivalences: (a) Equivalence #1, and (b) Equivalence #2.
@ ®) » The structure of the sampling rate alteration devices
|:| Two different cascade ar of 2 do pler and an up-sampler. can be changed in order to achieve more efficient
implementations
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Filters in Multirate Systems Filters in Multirate Systems

« The sampling rate of a critically sampled discrete- * In up-sampling, a lowpass filter is used after the up-

time system cannot be reduced without aliasing sampler to remove the unwanted images of the
« Before down-sampling the bandwidth of critically spectrum

sampled signal must be reduced by lowpass filtering " Interpolation filter ,[,,,,.m

¢ Similarly, the zero-valued samples introduced by an

up-sampler must b(.e interpOIQtEd to more appropriate * In down-sampling, a lowpass filter is used before the
values for an effective sampling rate increase down-sampler to reduce the frequency band in order
« Interpolation can be achieved by lowpass filtering to avoid aliasing

i . . . vin]
> Lowpass filters are needed > Decimation filter st}
in multirate systems
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Interpolation Filter

« If x[n] is passed through a factor-of-L up-sampler generating
x,[n] the relation between X (ei¥) and X(el®) is given by

as
XE")=2 3 X [ Jzﬂkj X, () =X ()

0

Interpolation Filter Specifications

» The Fourier transforms of the x,(t) and x[n] are related

0 k=—o0
« If x,[n] is passed through an ideal lowpass filter with a cutoff

* Since the sampling is done at the Nyquist rate, there " rwitr ¢
frequency at n/L and gain L, the output of the filter is precisely

is no overlap in the spectra of X,(ja/T,)

. _ : o yln]
« If the sampling rate is much higher, T=Ty/L, yielding , . " . .
. . PN - « In practice, a transition band is provided to ensure the
j
its Fourier transform Y(el) is related to X,(j2) realizability and stability of the lowpass interpolation filter H(z)
v (el X, 127zk L& X jo—j27K * The desired lowpass filter should have a stopband edge at
€)= Z ?Ok;a a T,/L o=7lL and passband edge o, close to o, to reduce the

distortion of the spectrum of the signal x[n]
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Filter Specifications Interpolation in Frequency Domain (L=2)
« If @, denoted the highest frequency that need to be o
preserved in the signal to be interpolated, the passband s :
; = pectrum of the input
edge o, of the lowpass filter should be at o= o, /L signal x[n]
¢ Summarizing: I % e
. L, |o|<e, /L T 7
Joy| — c .
‘H C )‘ - {0 rlLdolkr s 1 Spectrum of the
! - interpolator output v[n]:
« In a similar manner, the specifications for the lowpass S /S T " V(e') = X (e'*)
decimation filter can be developed TR, 77
. 1 |o<o, M Y The spectrum of interpolator
‘H ') ={ ' ¢ output is obtained by
0, 7/IM<lolcz filtering v[n], i.e., removing
where a, is the highest frequency needed to be preserved ——4——+—- theimages from the
in the decimated signal e 7Y spectrum
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Decimation in Frequency Domain (M=2)

" Spectrum of the input signal x[n]
i_' i N and the frequency response of
= o the decimation filter
e —_——— Stopband edge
y Passband edge
Y
m Decimator output without
B v o aliasing
’ ) I
Lo Y Lo, Without filtering the spectrum
2 g X‘ § of decimator output is aliased
2z I SN, version of x[n], i.e., the two
S e components
1
ZX(e?) and = X(-el®'?
N/w 2X(E) and X (e
o . T are overlapping
“.'7;‘..‘13" S"F)‘E'“"i;i‘y'?."?‘n““”‘" et i e ”?‘.'“1“'»‘»".; sessing; 31
ffect of aliasing H )

ri3

Filters for Fractional Sampling rate Alteration
« A fractional change in the sampling rate is achieved by
cascading a factor-of-M with a factor-of-L interpolator

¢ The cascade is equivalent to
— A decimator with a decimation factor of M/L

Hy@ (M AT L BH,@

or
— An interpolator with an interpolation factor of L/IM

1L M H@QPHE P M
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Filters for Fractional Sampling rate Alteration

v ek

* The two filters are in cascade are both lowpass filters

e Thus, only the one with lower stopband frequency is
needed

+

tL PO PM P

* The stopband cutoff frequency of the lowpass filter

H(z) is
w, _mln[ ”)
L'M
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Computational Requirements

* The interpolation and decimation filters can be
designed either as FIR or IR filters

« FIR filters are usually preferred because interpolation
introduces several zero-valued samples which need
not be “multiplied” by FIR filter coefficients

« Example: Sampling rate change by a factor 2/3

zero-valued
samples
£, =141
coefficients
8, = w0y needed in true

multiplications
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Halfband Filters

* For the sampling rate change by a factor-of-2 (L=2 or
M=2), the appropriate lowpass filter is a halfband filter

1H{w)l
\ j y
1,
N / N\ /
1 )

-2 0 L3 n 2

» The periodic frequency response of the halfband filter is
an approximation to a square wave in the frequency
domain

» The corresponding (noncausal) Fourier series h[n]
equals zero for n even (except n=0) and falls off
approximately as 1/n for n odd
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Computational Efficiency of the
Halfband Filters

» The corresponding (noncausal) Fourier series h[n]
equals zero for n even (except n=0) and falls off
approximately as 1/n for n odd

« If the filter is designed to preserve the odd symmetry of
the passband and the stopband, the coefficients h[n] for
n even will remain zero

» The multiplication rate is reduced by a factor of almost
two

* The odd symmetry of H’(el“) about #/2 can be
preserved by the FIR design techniques
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Narrowband Eilters Two-Stage Interpolation

X ()l . : .
* For very narrowband filters (L>>1 or M<<1) efficient fh igigzﬂiion with a
sampling rate changes can be implemented in several . | Jation fil
stages o o, 4 B, 3 « Interpolation filter
9 . . . ety : designed with a
« For example, interpolation with a factor-of-4 can be be P sampling frequency
done in two stages with a factor-of-2 interpolators m m m /’\/’/‘\\\ 40,

x(n) A %o . -
R X() TWO_ Stage_s'

X&) B J— * H,(ei®) designed
{ \ m /'\ m/’m\ with a sampling

: equency 22,
Xy ey « Hy(el®) designed

R N 2 "
X(w) X3 o) ) 46 - U - with a sampling

- m frequency 4.0,
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- Two-Stage Decimation
Narrowband Filters 9
« M=4:
- Decimation with a factor-of-4 can be be done in two e decimation filter
stages with a factor-of-2 interpolators designed with a
sampling frequency
0 ma x 2 @ 4_()S
A
X H(@) of 4] X, H{o) « Two stages for M=4:
] * H,(el°) reduces the
bandwidth to /2
x(n) o1 A(m) A 1 ko 0 " * = « Hy(el®) operating at the
Hlw) |i[ Hia) [l_zl . sampling frequency
o £2J2 reduces the
bandwith further to
\ / \ / . 4
o 2 n 2 an
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Narrowband Lowpass Filters Narrowband Bandpass Filters
) . » The center frequency «, can be translated to dc by
* Narrowband lowpass filters can be implemented by modulating the input signal by ei® and by translating
multistage decimation and interpolation the lowpass filtered signal back to
T T T T T T T T T T T T T T T e s e e e 1

Narrowband
--

Narrowband LPF

« If K is highly composite number the decimation and
interpolation can be performed in many stages

Narrowband

sin ayn
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The Polyphase Decomposition

« A single stage decimator or interpolator employing FIR
filters can be computationally efficient since the
necessary multiplications are required to compute the
output samples can be carried out only when needed

« The computational requirements can be further
decreased by using multistage designs

« Additional reduction in the computational complexity is

possible by realizing the FIR filters using the polyphase
decomposition
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The Decomposition

« Consider an arbitrary sequence {x[n]} with a z-transform
X(2): e
@ X(z)= > xnJz™"

n=—0

M-1
» X(z) can be rewritten as X(z)= Z Zikxk(ZM )
k=0
M-1 0
X (@)= x[nz"=> xMn+k]z", k=012,.,M-1
k= n=-x
» The subsequences {x[n]} are called the polyphase
components of the parent sequence {x[n]}
* The functions X,(z) given by the z-transforms of {x,[n]}, are

called the polyphase components of X(z)
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The Decomposition

* The relation between the subsequences {x,[n]} and the
original sequence x[n] is given by

X [n]=x[Mn+k], k=012,..M-1

¢ X(z) can be written in matrix form as

Xo(z")
X(Z):[l 7 7- M- X1(.ZM)
Xua(@")
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Structural Interpretation of the
Polyphase Decomposition

xo[n] = x[Mn]
xl[n]=x[Mn+l]

x2[n] =x[Mn+2]

Xppqlnl=xMn+M-1]
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Polyphase Realization of FIR Filters

L=1
General polyphase decomposition: H(z) = Z 2™ Em(zh)
m=0
Example: H(2) = Eo(2) + 27" Ei(2) + 22 Ea(2)
E(3
0(2) Eo(z) = h[0] + (3]~ + h[6]z™2

Ei(2) = k(1] + h[4]z™" +h[7)272
Ey(z) = h(2] + h[5)z~" + h[8]z 2

El(ZS)
Parallel realization of an
" FIR filter using the
E, @) polyphase decomposition
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FIR Filter Structures Based on the
Polyphase Decomposition

« Consider an M-branch polyphase decomposition of

H(z) given b M-1
® gen by H(z)=Y 7"E(z")

Type | polyphase realization Transpose structure
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FIR Filter Structures Based on the Computationally Efficient
Polyphase Decomposition Interpolator and Decimator Structures
« Alternative representation of the transpose structure « Consider the use of the
of the Type | polyphase decomposition is obtained polyphase decomposition in
using the notation the realization of the
R ()= Evoi () ! decimation filter
1=0,1 2,..,M-1

vinl
anl =¥ Hiz) Lu [y

¢ The corresponding
« If the lowpass filter is realized

polyphase decomposition 5 :
is given as . ] as a Type | polyphase
M2 e " 18 it | =8 stnl decomposition the decimator
H(z)= ;z R (z") Type Il polyphase s_truc.ture is as shown on the
o o ~ decomposition right: o o _
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Computationally Efficient .
P y Cascade Multirate Structure

Interpolator and Decimator Structures

* Using the cascade B F M FiM
equivalence #1 for L ln] —‘IT—L]—'W ynl

decimation

anl [ vilnl ¥lnl
'

xln] vy lm] ¥aln]
“f

« The structure reduces to a m

computationally more
efficient structure: Eyy(2) ] — B (z) (= ¥in]

« Expressing the transfer function H(z) in terms of its L-
term Type | polyphase form:

H@) =Y, 7*E(z")

¢ The structure is equivalent to the time-invariant
digital filter where E(z) is the zeroth polyphase term
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