
T-61.3010 DSP 2007 (B+C) 1/152

T-61.3010 Digital Signal Processing and Filtering

T-61.3010 Digitaalinen signaalinkäsittely ja suodatus

(B) Exercise material for spring 2007 by professor Olli Simula and assistant Jukka Parviainen.
Corrections and comments to t613010@cis.hut.fi, thank you!

This material is intended for “paper sessions” on Tuesdays 12-14 L (in English), on Wednesdays
10-12 G, and on Thursdays 14-16 G, in spring 2007. Each problem [Bxx] refers to Problem xx
in this material, see p. 2–4. Bring your own copy when coming to the session.

The course follows the book “Digital Signal Processing” by Sanjit K. Mitra. There are three
different editions available, 3rd being the newest. Notation (Mitra 2Ed Sec. 5.2 / 3Ed Sec. 4.2 )
refers to the section 5.2 in the 2nd Edition (yellow cover) of Mitra’s Book and to the section 4.2
in the 3rd Edition (blue, antenna). There is a brief correspondence table of three editions and
errata lists in the course web pages http://www.cis.hut.fi/Opinnot/T-61.3010/. Course
lecture slides by Olli Simula follow the third edition of Mitra’s book.
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Description of Example Problems

# Subject

Math Background 1-12
1 complex numbers, Carthesian and polar coordinate systems, Euler’s formula
2 Euler’s formula, cosine and sine, odd and even functions
3 complex numbers, graphical notation
4 complex-valued function
5 cosine function, amplitude, frequency, phase
6 logarithm, decibels, sinc, modulo, binary number representation
7 roots of a polynomial
8 complex-valued function, roots of polynomial
9 partial fraction expansion / decomposition

10 sum of geometric series
11 integral transforms
12 matrix product
Discrete-time Signals and Systems 13-29 M 2Ed Sec. 2, 3Ed Sec. 2
13 analog, discrete-time and digital signal
14 signals and sequences, unit impulse and unit step functions (δ[n], µ[n])
15 periodic signals
16 moving average
17 flow / block diagram of a discrete-time system
18 recognition of LTI systems, causal LTI systems, filter order, FIR, IIR
19 properties of LTI systems: linear, time-invariant, causal, stable
20 shifted and scaled sequences in LTI system
21 impulse response h[n], FIR, IIR
22 step response s[n]
23 linear convolution y(t) = x1(t) ⊛ x2(t) of continuous-time signals
24 linear convolution y[n] = h[n] ⊛ x[n] of discrete-time signals
25 convolution as products of polynomials
26 deconvolution
27 parallel and cascade (series) LTI systems
28 matched filter
29 auto- and cross-correlation
Discrete-time Fourier Transform 30-36 M 2Ed Sec. 3, 3Ed Sec. 3
30 continuous-time Fourier transform (CTFT)
31 spectrum, CTFT, discrete-time Fourier transform (DTFT), discrete Fourier

transform (DFT)
32 DTFT, computation from definition
33 DTFT, using a transform table
34 spectrum, DTFT
35 amplitude response, periodicity of DTFT
36 analysis of LTI FIR system: frequency, amplitude, phase response, group delay
Digital Processing of Continuous-Time Signals 37-42 M 2Ed Sec. 5, 3Ed Sec. 4Sec. 5
37 impulse train and Fourier-series

continued on next page
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continued from previous page
# Subject

38 sampling in frequency domain
39 sampling in frequency domain
40 aliasing
41 sampling, aliasing, anti-aliasing
42 anti-aliasing filter
Finite-Length Discrete Transforms 43-44 M 2Ed Sec. 4, 3Ed Sec. 5
43 DFT, matrix product
44 circular convolution
z-Transform 45-48 M 2Ed Sec. 3,4, 3Ed Sec. 6
45 analysis of LTI IIR system, transfer function, convolution theorem, partial

fraction expansion
46 amplitude response grafically from pole-zero-plot
47 analysis of LTI IIR system, pole-zero plot
48 transfer function, region of convergence (ROC)
LTI Discrete-Time Systems in the Transform Domain 49-51 M 2Ed Sec. 4, 3Ed Sec. 7
49 filter types: allpass, zero-phase, linear-phase, minimum-phase, maximum-

phase
50 parallel system
51 minimum-phase filter, inverse filter
Digital Filter Structures 52-56 M 2Ed Sec. 6, 3Ed Sec. 8
52 LTI subsystems
53 polyphase structure
54 canonic structure
55 direct form (DF) structures
56 direct form, transpose
IIR Digital Filter Design 57-60 M 2Ed Sec. 7, 3Ed Sec. 9
57 scaling factor
58 filter specifications
59 analog filter approximations, M 2Ed Sec. 5, 3Ed Sec. 4
60 bilinear transform and impulse-invariant method in digital filter design, M 2Ed

Sec. 5.4, 3Ed Sec. 4.4
FIR Digital Filter Design 61-62 M 2Ed Sec. 7, 3Ed Sec. 10
61 FIR-window method in digital filter design
62 computational issues on IIR / FIR filters
DSP Algorithm Implementation 63-66 M 2Ed Sec. 8, 3Ed Sec. 11
63 computational set of equations, presedence graph
64 FFT computational complexity
65 DIT FFT algorithm
66 fixed-point binary number representations
Analysis of Finite Wordlength Effects 67-69 M 2Ed Sec. 9, 3Ed Sec. 12
66 quantization, error densities
67 quantization noise
68 error-feedback structure
Multirate Digital Signal Processing 70-74 M 2Ed Sec. 10, 3Ed Sec. 13,14
69 up- and downsampling in time- and frequency domain

continued on next page
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continued from previous page
# Subject

70 multirate system analysis
71 linearity of up- and downsampling systems
72 filter bank
73 interpolated FIR filter (IFIR), FIR window method design
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T-61.3010 Digital Signal Processing and Filtering
Example problems for spring 2007.
Solutions start from Page 27.

Problems

Math Background 1-12

1. Complex numbers in Carthesian (rectangular) coordinates z = x + yj (or i) and polar
coordinates z = r · ejθ. The complex conjugate z∗ is z∗ = x − yj = r · e−jθ. Euler’s
formula ejω = cos(ω) + j sin(ω).

a) Express z = 2e−jπ in rectangular coordinates.

b) Express z = −1 + 2j in polar coordinates.

c) Which (two) angles satisfy sin(ω) = 0.5?

d) What are z + z∗, |z + z∗|? and ∠(z + z∗)? What are zz∗, |zz∗|? and ∠zz∗?

2. The important Euler’s formula is ejθ = cos(θ) + j · sin(θ). Cosine is even function f(x) =
f(−x) and sine is odd function f(x) = −f(−x).

a) Express with cosines and sines: ejθ + ej(−θ).

b) Express with cosines and sines: ejθ − ej(−θ).

c) Express with cosines and sines: ejπ/8 · ejθ − ej(−π/8) · ej(−θ).

3. Consider the following three complex numbers

z1 = 3 + 2j

z2 = −2 + 4j

z3 = −1− 5j

a) Draw the vectors z1, z2, and z3 separately in complex plane.

b) Draw and compute the sum z1 + z2 + z3.

c) Draw and compute the weighted sum z1 − 2z2 + 3z3.

d) Draw and compute the product z1 · z2 · z3.

e) Compute and reduce the division z1/z2.

4. Examine a complex-valued function

H(ω) = 2− e−jω

where ω ∈ [0 . . . π] ∈ R.

a) Compute values of Table 1 with a calculator. Euler: ejω = cos(ω) + j sin(ω).

b) Draw the values at ω = {0, π/4, . . . , π} into complex plane (x, y). Interpolate
smoothly between the points.

c) Sketch |H(ω)| as a function of ω. Interpolate.

d) Skecth ∠H(ω) as a function of ω. Interpolate.
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5. A cosine signal can be represented using its angular frequency Ω or frequency f , amplitude
A and phase θ:

x(t) = A cos(Ωt + θ) = A cos(2πft + θ)

a) Estimate A, f, θ for the cosine x1(t) in Figure 1(a).

b) Sketch a cosine x2(t), with A = 2, angular frequency 47 rad/s and angle −π/2.

c) Express x2(t) in (b) using exponential functions.
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Figure 1: Cosine x1(t) (left) and x2(t) (right) in Problem 5.

6. Some elementary functions and notations.

a) Compute with a calculator: log8 7.

b) The power of signal is attenuated from 10 to 0.01. How much is the attenuation in
decibels?

c) Sketch the curve p(x) =
∑+N

k=−N kx for various N .

d) Sinc-function is useful in the signal processing. It is defined sinc(x) = sin(πx)/(πx).
Also it is known that sin(x)/x→ 1, when x→ 0, and with sinc-function sinc(0) = 1.

Consider h(n) = sin(0.75πn)/(πn). What is h(0)?

e) Modulo-N operation for number x is written here as < x >N . What is < −4 >3?

f) What is the binary number (1001011)2 as a decimal number?

7. Roots of a polynomial p(x) can be found from p(x) = 0. Nth root of z = r ej(θ+2πk) is
N
√

z = | N
√

r| · ej(2π k/N+θ/N), where k = 0 . . .N − 1.

a) Compute roots of H(z) = z2 + 2z + 2.

b) Compute roots of H(z) = 1 + 16z−4.

c) Compute long division (4z4 − 8z3 + 3z2 − 4z + 6)/(2z − 3).

ω x = Real(H(ω)) y = Imag(H(ω)) r = |H(ω)| θ = ∠H(ω)

0
π/4
π/2

3π/4
π

Table 1: Problem 4: values of a complex-valued function in rectangular (x, y) and polar (r, θ)
coordinates.
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8. Examine a complex-valued function (z ∈ C)

H(z) =
1 + 0.5z−1 + 0.06z−2

1− 1.4z−1 + 0.48z−2

a) Multiply both sides by z2.

b) Solve z2 + 0.5z + 0.06 = 0.

c) Solve z2 − 1.4z + 0.48 = 0.

d) H(z) can be written with five values complex values K, z1, z2, p1, and p2

H(z) = K · (z − z1) · (z − z2)

(z − p1) · (z − p2)

What are the five values?

e) What are the coefficients of H(z). What are the roots of H(z)? What is the order of
the numerator polynomial of H(z)? What is the order of the denominator polynomial
of H(z)?

9. Partial fraction expansion (osamurtohajotelma, osamurtokehitelmä) is used to divide a
high-order rational expression into a sum of low-order rational expressions. For example,
1/(x2 + 3x + 2) = 1/(x + 1)− 1/(x + 2).

Decomposition is quite trivial if there are not multiple roots neither is the order of nu-
merator polynomial as big or bigger as the order of the denominator polynomial. For
more complicated cases, see (Mitra 2Ed Sec. 3.9 / 3Ed Sec. 6.4.3 ), or any other math
reference.

a) Decompose f(x) = 1/(x2 + 1) into sum of first-order expressions.

b) Decompose H(z) = (0.4 − 0.2z−1)/(1 − 0.1z−1 − 0.06z−2) into sum of first-order
expressions.

10. When the ratio q in geometric series is |q| < 1, the sum of series converges to
∑∞

k=0 qk =

1/(1− q), and correspondingly
∑N

k=0 qk = (1− qN+1)/(1− q).

Other known series are {1/n} and {1/n2}. Notice that the former does not converge,
while the latter does.

a) What is sum of series S =
∑∞

k=0(0.5)k.

b) S =
∑∞

k=10(−0.6)k−2.

c) S =
∑∞

k=2(0.8
k−2 · e−jωk).

11. Integral transforms, like Fourier-transforms, play an important role in signal processing.

a) List all integral transforms that are used in previous signal processing courses.

b) Compute the integral X(Ω) =
∫ 4

0
e−jΩtdt.

12. Using notation WN = e−j2π/N and matrix

D4 =







1 1 1 1
1 W 1

4 W 2
4 W 3

4

1 W 2
4 W 4

4 W 6
4

1 W 3
4 W 6

4 W 9
4







compute X = D4x, when x =
[
2 3 5 −1

]T
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Discrete-time Signals and Systems 13-29

13. Consider an analog signal x(t) = π · cos(2πt). Plot the analog signal, the discrete-time
signal sampled with 5 Hz, and the digital signal with accuracy to integer numbers.

14. The unit impulse function δ[n] and the unit step function µ[n] (or u[n]) are defined

δ[n] =

{

1, when n = 0

0, when n 6= 0
µ[n] =

{

1, when n ≥ 0

0, when n < 0

Sketch the following sequences around the origo

a) x1[n] = sin(0.1πn)

b) x2[n] = sin(2πn)

c) x3[n] = δ[n− 1] + δ[n] + 2δ[n + 1]

d) x4[n] = δ[−1] + δ[0] + 2δ[1]

e) x5[n] = µ[n]− µ[n− 4]

f) x6[n] = x3[−n + 1]

15. Continuous-time signal x(t) is periodic, if there exists period T ∈ R, for which x(t) =
x(t + T ), ∀t. Discrete-time signal (sequence) x[n] is periodic, if ∃N ∈ Z, for which
x[n] = x[n + N ], ∀n ∈ Z. The fundamental period T0 (or N0) is the smallest period
bigger than 0.

Which of the following signals are periodic? Define the length of the fundamental period
for periodic signals.

a) x(t) = 3 cos(8π
31

t)

b) x[n] = 3 cos(8π
31

n)

c) x(t) = cos(π
8
t2)

d) x[n] = 2 cos(π
6
n− π/8) + sin(π

8
n)

e) x[n] = {. . . , 2, 0, 1, 2, 0, 1, 2, 0, 1, . . .}
f) x[n] =

∑+∞
k=−∞ δ[n− 4k] + δ[n− 4k − 1]

16. Tempatures measured in DSPVillage: 2006-01-05: +5 ◦C, 2007-01-04: +3 ◦C, 2007-01-03:
−1 ◦C, 2007-01-02: +2 ◦C, 2007-01-01: −5 ◦C, 2006-12-31: −7 ◦C. They can be written as
a sequence {5, 3, −1, 2, −5, −7}. Compute “a two-point moving average”, i.e., take two
adjacent samples, sum together, and divide by two.

17. There are some basic operations on sequences (signals) in discrete-time systems (x refers
to input to the system / operation, y output) shown also in Figure 2.

x[n]

x[n]

x[n−1]
D

z
x[n−1]−1

x[n]
a

ax[n]

x  [n]+x  [n]21

x  [n] . x  [n]21

x  [n]

x  [n]1

2 x  [n]

x  [n]1

2

x[n]

x[n]
x[n]

(a) (d)(b) (c) (e)

Figure 2: Problem 17: Basic operations in discrete-time systems, (a) sum of sequencies, (b)
amplification by constant, (c) unit delay (D, T , or z−1), (d) product of signals, modulator
(non-LTI systems), and (e) branch / pick-off node.

Express the input-output relations of the discrete-time systems in Figure 3.
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D

D

y[n]x[n]

−2

(a)

z−1z−1

z−1

x[n]

−2 2

y[n]

(b)

x[n] y[n]

cos(     n)ω

(c)

v[n]
+

+
c

x[n]

y[n]

a b

D

(d)

Figure 3: Discrete-time systems for Problems 17, 21, and 22.

18. Look at the flow (block) diagrams in Figure 4.

a) What does LTI mean? In what ways can the system be proved (Problem 19) or
shown to be LTI?

b) Which systems are linear and time-invariant (LTI) without any computation?

c) Which systems have feedback?

d) Which LTI systems are FIR and which are IIR?

19. For each the following discrete-time systems, determine whether or not the system is (1)
linear, (2) causal, (3) stable, and (4) shift-invariant. The sequences x[n] and y[n] are the
input and output sequences of the system.

a) y[n] = x3[n],

b) y[n] = γ +
∑2

l=−2 x[n− l], γ is a nonzero constant,

c) y[n] = αx[−n], α is a nonzero constant.

20. A LTI system with an input x1[n] = {1, 1, 1} gives an output y1[n] = {0, 2, 5, 5, 3}. If
a new input is x2[n] = {1, 3, 3, 2}, what is the output y2[n]?

21. Impulse response h[n] is the response of the system to the input δ[n].

a) What is the impulse response of the system in Figure 3(a)? What is the connection
to the difference equation? Is this LTI system stable/causal?

b) What are the first five values of impulse response of the system in Figure 3(b)? Hint:
Fetch the input δ[n] and read what comes out. Is it possible to say something about
stability or causality of the system?

c) What are the first five values of impulse response of the system in Figure 3(d)?

22. Step response s[n] is the response of the system to the input µ[n]. What are the step
responses of systems in Figures 3(a) and (b)?
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x[n] y[n]

-0.75

0.5

z-1

z-1

i

0.5 -0.75

y[n]x[n]

-1z -1z

ii

0.5

x[n]

0.5

0.75

-0.75

y[n]

z-1

z-1

iii

1

y[n]1/2x[n]

iv

v[n]
+

+
c

x[n]

y[n]

a b

D

v

Figure 4: Flow diagrams of Problem 18.

23. Compute the linear convolution of two signals x1(t) and x2(t)

y(t) = x1(t) ⊛ x2(t) =

∫ ∞

−∞

x1(τ) · x2(t− τ) dτ

in both cases (a) and (b) in Figure 5. The arrows in (b) are impulses δ(t).

t

1

2

−1 0 10

x1(t)

t42

1

2

3

2

x2(t)

t

1

2

−1 0 10

x1(t)

t42

1

2

3

2

x2(t)

Figure 5: Problem 23: signals x1(t) and x2(t) to be convolved, left: (a), right: (b).

24. Linear convolution of two sequences is defined as (Mitra 2Ed Eq. 2.64a, p. 72 / 3Ed Eq.
2.73a, p. 79 )

y[n] = h[n] ⊛ x[n] = x[n] ⊛ h[n] =
∞∑

k=−∞

x[k] h[n− k]

a) Compute x[n] ⊛ h[n], when
x[n] = δ[n] + δ[n− 1], and h[n] = δ[n] + δ[n− 1].
What is the length of the convolution result?

b) Compute x1[n] ⊛ x2[n], when
x1[n] = δ[n] + 5δ[n− 1], and x2[n] = −δ[n− 1] + 2δ[n− 2]− δ[n− 3]− 5δ[n− 4].
What is the length of the convolution result? Where does the output sequence start?

c) Compute h[n] ⊛ x[n], when
h[n] = 0.5nµ[n], and x[n] = δ[n] + 2δ[n− 1]− δ[n− 2].
What is the length of the convolution result?
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25. Consider a LTI-system with impulse response h[n] = δ[n−1]−δ[n−2] and input sequence
x[n] = 2δ[n] + 3δ[n− 2].

a) What is the length of convolution of h[n] and x[n] (without computing convolution
itself)? Which index n is the first one having a non-zero item?

b) Compute convolution y[n] = h[n] ⊛ x[n]

c) Consider polynomials S(x) = 2 + 3x2 and T (x) = x − x2. Compute the product
U(x) = S(x) · T (x)

d) Check the result by computing the polynomial division T (x) = U(x)/S(x).

26. The impulse response h1[n] of a LTI system is known to be h1[n] = µ[n]− µ[n− 2]. It is
connected in cascade (series) with another LTI system h2 as shown in Figure 6.

h [n]1 h [n]1

x[n] y[n]
h [n]2

Figure 6: The cascade system of Problem 26.

Compute the impulse response h2[n], when it is known that the impulse response h[n] of
the whole system is shown in Table 2 below.

n < 0 0 1 2 3 4 > 4
h[n] 0 1 5 9 7 2 0

Table 2: Impulse response of the cascade system in Problem 26.

27. LTI systems are commutative, distributive and associative. Determine the expression for
the impulse response of each of the LTI systems shown in Figure 7.

h5[n]

h2[n]

h4[n]h3[n]

h1[n]

(a)

h5[n]

h3[n]h2[n]

h4[n]

h1[n]

(b)

Figure 7: LTI systems in Problem 27.

28. The impulse response of a digital matched filter, h[n], is the time-reversed replica of the
signal to be detected. The time-shift is needed in order to get a causal filter.

The (binary) signal to be detected is given by s[n] = {1, 1, 1,−1,−1, 1,−1}. Consider an
input sequence x[n] which is a periodic sequence repeating s[n]. Determine h[n] and the
result of filtering y[n] = h[n] ⊛ x[n].

29. Cross-correlation sequence rxy[l] of two sequences and autocorrelation sequence rxx[l] with
lag l = 0,±1,±2, . . . are defined
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rxy[l] =
∞∑

n=−∞

x[n]y[n− l] rxx[l] =
∞∑

n=−∞

x[n]x[n − l]

Determine the autocorrelation sequence of the sequence

x1[n] = αnµ[n], |α| < 1

and show that it is an even sequence. What is the location of the maximum value of the
autocorrelation sequence?

Discrete-time Fourier Transform 30-36

30. Compute continuous-time Fourier transform (CTFT) of the following analog signals using
the definition

X(jΩ) =

∫ ∞

−∞

xa(t) e−jΩt dt

a) x1(t) = e−3tµ(t)

b) x2(t) = e−j3t

c) x3(t) = e−j3t + ej3t

31. Sketch the following signals in time-domain and their (amplitude) spectra in frequency-
domain.

a) x1(t) = cos(2π 500 t)

b) x2(t) = 4 cos(2π 200 t) + 2 sin(2π 300 t)

c) x3(t) = e−j(2π 250t) + ej(2π 250t)

d) x4(t) = x1(t) + x2(t) + x3(t)

32. Compute discrete-time Fourier transform (DTFT) for each of the following sequences
using the definition

X(ejω) =

∞∑

n=−∞

x[n]e−jωn

a) x1[n] = δ[n− 2]

b) x2[n] = 0.5nµ[n]

c) x3[n] = a[n] · cos(π
5
n)

33. Consult the transform table and find the DTFTs of sequences

a) x3[n] = a[n] · cos(0.2πn)

b)

x4[n] =







0, n < −1 ∨ n ≥ 6

2, −1 ≤ n < 1

3, 1 ≤ n < 4

1, 4 ≤ n < 6
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34. Suppose that a real sequence x[n] and its discrete-time Fourier transform (DTFT) X(ejω)
are known. The sampling frequency is fs. At angular frequency ωc = π/4: X(ej(π/4)) =
3 + 4j. Determine

a) |X(ej(π/4))| b) ∠X(ej(π/4))

c) X(ej(−π/4)) d) X(ej(π/4+2π))

e) If fs = 4000 Hz, what is fc

35. The magnitude response function |X(ejω)| of a discrete-time sequence x[n] is shown in
Figure 8 in normalized angular frequency axis. Sketch the magnitude response for the
range −π ≤ ω < π. Is the signal x[n] real or complex valued?

7.5π 9.5π8.5π

Figure 8: |X(ejω)| of Problem 35.

36. A LTI filter is characterized by its difference equation

y[n] = 0.25x[n] + 0.5x[n− 1] + 0.25x[n− 2]

a) Draw the block diagram

b) What is the impulse response h[n]

c) Determine the frequency response H(ejω) =
P

pke−jωk
P

dke−jωk

d) Determine the amplitude response |H(ejω)|
e) Determine the phase response ∠H(ejω)

f) Determine the group delay τ(ω) = −d∠H(ejω)
dω

Digital Processing of Continuous-Time Signals 37-42

37. Show that the periodic impulse train p(t)

p(t) =
∞∑

n=−∞

δ(t− nT )

can be expressed as a Fourier series

p(t) =
1

T

∞∑

k=−∞

ej(2π/T )kt =
1

T

∞∑

k=−∞

ejΩT kt,

where ΩT = 2π/T is the sampling angular frequency.

38. Impulse train in Problem 37 can be also expressed as a Fourier transform

P (jΩ) =
2π

Ts

∞∑

k=−∞

δ(Ω− k Ωs)
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Sampling can be modelled as multiplication in time domain x[n] = xp(t) = x(t)p(t).
What is Xp(jΩ) for an arbitrary input spectrum X(jΩ)?

Hints: Fourier transform of a periodic signal (Fourier series)

X(jΩ) =

∞∑

n=−∞

2πakδ(Ω− kΩ0)

Multiplication of signals in time domain corresponds to convolution of transforms in
frequency domain:

x1(t) · x2(t) ↔ 1

2π

[
X1(jΩ) ⊛ X2(jΩ)

]
=

1

2π

∫ ∞

−∞

X1(jθ) ·X2(j(Ω− θ))dθ

39. Suppose that a continuous-time signal x(t) and its spectrum |X(jΩ)| in Figure 9 are
known.

hf

1

|X(jw)|

Figure 9: Spectrum X(jΩ) in Problem 39.

The highest frequency component in the signal is fh. The signal is sampled with frequency
fs, i.e. the interval between samples is Ts = 1/fs: x[n] = x(nTs). Sketch the spectrum
|X(ejω)| of the discrete-time signal, when

a) fh = 0.25 fs

b) fh = 0.5 fs

c) fh = 0.75 fs

40. Consider a continuous-time signal

x̃(t) =

{
cos(2πf1t) + cos(2πf2t) + cos(2πf3t), t ≥ 0
0, t < 0

where f1=100 Hz, f2=300 Hz and f3=750 Hz. The signal is sampled using frequency fs.
Thus, a discrete signal x[n] = x̃(nTs) = x̃(n/fs) is obtained.

Sketch the magnitude of the Fourier spectrum of x[n], the sampled signal, when fs equals
to (i) 1600 Hz (ii) 800 Hz (iii) 400 Hz.

Use an ideal reconstruction lowpass filter whose cutoff frequency is fs/2 for each case.
What frequency components can be found in reconstructed analog signal xr(t)?

41. Real analog signal x(t), whose spectrum |X(jΩ)| is drawn in Figure 10, is sampled with
sampling frequency fs = 8000 Hz into a sequence x[n].

a) In the sampling process aliasing occurs. What would have been smallest sufficient
sampling frequency, with which no aliasing would not happen?
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b) Analog signal x(t) is 0.2 seconds long. How many samples are there in the sequence
x[n]?

c) Sketch the spectrum |X(ejω)| of sampled sequence x[n].

d) Sequence x[n] is filtered with a LTI system, whose pole-zero plot is shown in Fig-
ure 10. After that filtered sequence y[n] is reconstructed (ideally) to continuous-time
yr(t). Sketch the spectrum |Yr(jΩ)| in range f = [0 . . . 20] kHz.

|X(j   )|Ω

84 f (kHz) −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

21

Figure 10: Problem 41: Spectrum left. Pole-zero plot right.

42. Suppose that there is an analog signal which will be sampled with 8 kHz. The interesting
band is 0 . . . 2 kHz. Sketch specifications for an anti-aliasing filter. Determine the order of
the filter when using Butterworth approximation and minimum stopband attenuation is
50 dB. The variables in Table 3: Ωp is the passband edge frequency (interesting part), ΩT

is the sampling frequency, and Ω0 is the frequency after which the aliasing components
are small enough.

Ω0 = 2Ωp 3Ωp 4Ωp

Attenuation (dB) 6.02N 9.54N 12.04N
ΩT = 3Ωp 4Ωp 5Ωp

Table 3: Approximate minimum stopband attenuation of a Butterworth lowpass filter (Mitra
2Ed Table 5.1, p. 336 / 3Ed Table 4.1, p. 210 ). See the text in Problem 42 for details.

Finite-Length Discrete Transforms 43-44

43. The exponent term in DFT/IDFT is commonly written WN = e−j2π/N .

a) Compute and draw in complex plane values of W k
3

b) Compute 3-DFT for the sequence x[n] = {1, 3, 2}.

44. Let h[n] and x[n] be two finite-length sequences given below:

h[n] =







5, for n = 0,
2, for n = 1,
4, for n = 2

x[n] =







−3, for n = 0,
4, for n = 1,
0, for n = 2,
2, for n = 3

a) Determine the linear convolution yL[n] = h[n] ⊛ x[n].

b) Extend h[n] to length-4 sequence he[n] by zero-padding and compute the circular
convolution yC[n] = he[n] 4© x[n].

c) Extend both sequences to length-6 sequences by zero-padding and compute the cir-
cular convolution yC [n] = he[n] 6© xe[n]. Show that now yC[n] = yL[n]!
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z-Transform 45-48

45. Consider a LTI system depicted in Figure 11 with registers having initial values of zero
and the input sequence x[n] = (−0.8)nµ[n].

z−1 z−1

0.8

x[n] y[n]

z−1

−0.2

0.9

Figure 11: LTI system of Problem 45.

a) What is the difference equation of the system?

b) Compute X(z) using the definition of z-transform or consult the z-transform table.

c) Apply z-transform to the difference equation. What is the transfer function H(z) =
Y (z)/X(z)? Where are the constant multipliers of the system seen in Figure 11 in
difference equation and in transfer function? Hint: the z-transform of K w[n − n0]
is K z−n0 W (z).

d) Now it is possible to compute the output y[n] without convolution in time-domain
using the convolution theorem

y[n] = h[n] ⊛ x[n] ↔ Y (z) = H(z) ·X(z)

Write down the equation for Y (z), use partial fraction expansion in order to achieve
rational polynomials of first order, and then use the inverse z-transform (equation
in (b)).

46. Consider the pole-zero plots in Figure 12.

a) What is the order of each transfer function?

b) Are they FIR or IIR?

c) Sketch the amplitude response for each filter.

d) What could be the transfer function of each filter?

47. Consider the filter described in Figure 13.

a) Derive the difference equation of the system.

b) Calculate the transfer function H(z).

c) Calculate the zeros and poles of H(z). Sketch the pole-zero plot. Is the system
stable and/or causal?

d) If the region of convergence (ROC) of H(z) includes the unit circle, it is possible to
derive frequency response H(ejω) by applying z = ejω. Do this!

e) Sketch the magnitude (amplitude) response |H(ejω)| roughly. Which frequency gives
the maximum value of |H(ejω)|? (If you want to calculate magnitude response
explicitely, calculate |H(ejω)|2 = H(ejω)H(e−jω) and use Euler’s formula.)
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Figure 12: Pole-zero plots of LTI systems in Problem 46.

y[n]x[n]

-0.81-1

-1Z

-1

Z-1

Z -1Z

Figure 13: LTI system of Problem 47.

f) Compute the equation for the impulse response h[n] using partial fraction expansion
and inverse z-transform.

48. The transfer function of a filter is

H(z) =
1− z−1

1− 2z−1 + 0.75z−2

a) Compute the zeros and poles of H(z).

b) What are the three different regions of convergence (ROC)?

c) Determine the ROC and the impulse response h[n] so that the filter is causal.

d) Determine the ROC and the impulse response h[n] so that the filter is stable.

LTI Discrete-Time Systems in the Transform Domain 49-51

49. Examine the following five filters and connect them at least to one of the following cat-
egories (a) zero-phase, (b) linear-phase, (c) allpass, (d) minimum-phase, (e) maximum-
phase.

h1[n] = −δ[n + 1] + 2δ[n]− δ[n− 1]

H2(z) =
1 + 3z−1 + 2.5z−2

1− 0.5z−1

y3[n] = 0.5y3[n− 1] + x[n] + 1.2x[n− 1] + 0.4x[n− 2]

H4(z) =
0.2− 0.5z−1 + z−2

1− 0.5z−1 + 0.2z−2

H5(e
jω) = −1 + 2e−jω − e−2jω
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50. Consider a stable and causal discrete-time LTI system S1, whose zeros zi and poles pi are

zeros: z1 = 1, z2 = 1

poles: p1 = 0.18, p2 = 0

Add a LTI FIR filter S2 in parallel with S1 as shown in Figure 14 so that the whole system
S is causal second-order bandstop filter, whose minimum is approximately at ω ≈ π/2
and whose maximum is scaled to one. What are transfer functions S2 and S?

S1

S2

y[n]x[n] K

Figure 14: Problem 50: Filter S constructed from LTI subsystems S1 and S2.

51. A second-order FIR filter H1(z) has zeros at z = 2± j.

a) Derive a minimum-phase FIR filter with exactly same amplitude response (Mitra
2Ed Sec. 4.7, p. 246 / 3Ed Sec. 7.2.3, p. 365 ).

b) Derive an inverse filter of the minimum-phase FIR filter computed in (a) (Mitra 2Ed
Sec. 4.9, p. 253 / 3Ed Sec. 7.6, p. 396 ).

Digital Filter Structures 52-56

52. Derive the transfer function of the feedback system shown in Figure 15.

E(z)
w[n] y[n]x[n]

F(z)

G(z)

Figure 15: System in Problem 52.

53. Develop a polyphase realization of a length-9 FIR transfer function given by

H(z) =

8∑

n=0

h[n]z−n

with (a) 2 branches and (b) 4 branches.

54. Analyze the digital filter structure shown in Figure 16 and determine its transfer function
H(z) = Y (z)/X(z).

a) Is the system LTI?

b) Is the structure canonic with respect to delays?

c) Compute H(z)H(z−1) (the squared amplitude response). What is the type of this
filter (lowpass/highpass/bandpass/bandstop/allpass)?
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z−1 z−1

z−1 z−1

y[n]x[n]

K

A B

−1

−1

Figure 16: The flow diagram of the system in Problem 54.
.

z

z

w[n] y[n]x[n]

0.8

−1

−1

−0.2

0.9

Figure 17: The block diagram of direct form II of Problem 55.

55. The filter in Figure 17 is in canonic direct form II (DF II). Draw it in DF I. What is the
transfer function H(z)?

56. Develop a canonic direct form realization of the transfer function

H(z) =
2 + 4z−1 − 7z−2 + 3z−5

1 + 2z−1 + 5z−3

and then determine its transpose configuration.

IIR Digital Filter Design 57-60

57. Magnitude specifications are normally expressed in normalized form. The maximum of
the amplitude response is scaled to one, and the frequency axis is scaled up to half of the
sampling frequency, 0 . . . π. The first term of the denominator polynomial should also be
1.

Consider the following digital lowpass filter of type Chebyshev II:

H(z) = K · 0.71− 0.36z−1 − 0.36z−2 + 0.71z−3

1− 2.11z−1 + 1.58z−2 − 0.40z−3

Normalize the maximum of the amplitude response to the unity (0 dB).

58. Sketch the following specifications of a digital filter on paper. Which of the amplitude
responses of the realizations in Figure 18 do fulfill the specifications?

Specifications: Digital lowpass filter, sampling frequency fT 8000 Hz, passband edge fre-
quency fp 1000 Hz, transition band 500 Hz (transition band is the band between passband
and stopband edge frequencies!), maximum passband attenuation 3 dB, minimum stop-
band attenuation 40 dB.
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(a) Elliptic, N=4

0 2000 4000
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(b) Chebychev II, N=10

0
−70

−60

−50

−40

−30

−20

−10

0

ω

dB

π/2 π

(c) FIR/Hamming, N=50

Figure 18: Three realizations in Problem 58: amplitude responses of (a) 4th order elliptic, (b)
10th order Chebychev II, (c) 50th order FIR using Hamming window.

59. Connect first each amplitude response to the corresponding pole-zero plot in Figure 19.
Then recognize the following digital IIR filter algoritms: Butterworth, Chebyshev I,
Chebyshev II, Elliptic. The conversion from analog to digital form is done using bilinear
transform. The sampling frequency in figures is 20 kHz.

0 5000 10000
−60

−40

−20

0

0 5000 10000
−60

−40

−20

0

0 5000 10000
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−40

−20

0

0 5000 10000
−60

−40

−20

0

(a)

−1 0 1
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−0.5

0

0.5

1

−1 0 1
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−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

(b)

Figure 19: Problem 59. Digital filters from analog approximations through bilinear transform,
(a) amplitude responses with specifications, fs = 20000 Hz (b) pole-zero plots.

60. Consider the following prototype analog Butterworth-type lowpass filter

HprotoLP (s) =
1

s + 1

a) Form an analog first-order lowpass filter with cutoff frequency Ωc by substituting
H(s) = HprotoLP ( s

Ωc
). Draw the pole-zero plot in s-plane.

b) Implement a discrete first-order lowpass filter HImp(z), whose cutoff frequency (-3
dB) is at fc = 100 Hz and sampling rate is fs = 1000 Hz, applying the impulse-
invariant method to H(s). Draw the pole-zero plot of the filter HImp(z).

c) Implement a discrete first-order lowpass filter HBil(z) with the same specifications
applying the bilinear transform to H(s). Prewarp the edge frequency. Draw the
pole-zero plot of the filter HBil(z).



T-61.3010 DSP 2007 (B+C) 21/152 PROBLEMS

FIR Digital Filter Design 61-62

61. Use windowed Fourier series method and design a FIR-type (causal) lowpass filter with
cutoff frequency 3π/4. Let the order of the filter be 4.

See Figure 20, in left the amplitude response of the ideal lowpass filter H(ejω) with cut-off
frequency at 3π/4. In right, the corresponding inverse transform of the desired ideal filter
hd[n], which is sinc-function according to the transform pair rect(.) ↔ sinc(.):

hd[n] = {. . . ,−0.1592, 0.2251, 0.75, 0.2251,−0.1592, . . .}

M
ag

ni
tu

de

1

π ω
−10 −5 0 5 10

−0.2

0

0.2

0.4

0.6

0.8

Ideal LP w
c
 = 3 π/4 → h

d
[n], n ∈  (−10,..,10)

Figure 20: Problem 61: (a) The amplitude response of the ideal lowpass filter, and (b) the
corresponding impulse response h[n] values. The cut-off frequency is at ωc = 3π/4.

a) Use the rectangular window of length 5, see Figure 21(a). The window function is
wr[n] = 1,−M ≤ n ≤M, M = 2

b) Use the Hamming window of length 5, see Figure 21(b). The window function is

wh[n] = 0.54 + 0.46 cos

(
2πn

2M

)

, −M ≤ n ≤M, M = 2

which results to wh[n] = {0.08, 0.54, 1, 0.54, 0.08}
c) Compare how the amplitude responses of the filters designed in (a) and (b) differ

assuming that the window size is high enough (e.g. M = 50).

−4 −2 0 2 4

0

0.2

0.4

0.6

0.8

1

Rectangular window

−4 −2 0 2 4

0

0.2

0.4

0.6

0.8

1

Hamming window

Figure 21: Problem 61: (a) rectangular window wr[n] of length 5, and (b) Hamming window
wh[n] of length 5.

62. The following transfer functions H1(z) and H2(z) representing two different filters meet
(almost) identical amplitude response specifications

H1(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
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where b0 = 0.1022, b1 = −0.1549, b2 = 0.1022, a1 = −1.7616, and a2 = 0.8314, and

H2(z) =
12∑

k=0

h[k]z−k

where h[0] = h[12] = −0.0068, h[1] = h[11] = 0.0730, h[2] = h[10] = 0.0676,
h[3] = h[9] = 0.0864, h[4] = h[8] = 0.1040, h[5] = h[7] = 0.1158, h[6] = 0.1201.

For each filter,

a) state if it is a FIR or IIR filter, and what is the order

b) draw a block diagram and write down the difference equation

c) determine and comment on the computational and storage requirements

d) determine first values of h1[n]

DSP Algorithm Implementation 63-66

63. See the digital filter structure in Figure 22. Write down all equations for wi[n] and y[n].
Create an equivalent matrix representation y[n] = Fy[n]+Gy[n−1]+x[n], where y[n] =
[
w1[n] w2[n] w3[n] w4[n] y[n]

]T
. Verify the computability condition by examining the

matrix F. Develop a computable set of time-domain equations. Develop the precedence
graph (Mitra 2Ed Sec. 8.1, p. 515 / 3Ed Sec. 11.1, p. 589 ).

Z−1

Z−1

Z−1

y[n]x[n]

5w2

2

−3

1

−2

w1

−1

w4

w3

Figure 22: Problem 63: Digital filter structure.

64. Suppose that the calculation of FFT for a one second long sequence, sampled with 44100
Hz, takes 0.1 seconds. Estimate the time needed to compute (a) DFT of a one sec-
ond long sequence, (b) FFT of a 3-minute sequence, (c) DFT of a 3-minute sequence.
The complexities of DFT and FFT can be approximated with O(N2) and O(N log2 N),
respectively.

65. Using radix-2 DIT FFT algorithm with modified butterfly computational module compute
discrete Fourier transform for the sequence x[n] = {2, 3, 5,−1} (Mitra 2Ed Sec. 8.3.2, p.
538 / 3Ed Sec. 11.3.2, p. 610 ). The equation pair on rth level (Mitra 2Ed Eq. 8.42a,
8.42c, p. 543 / 3Ed Eq. 11.45a, 11.45c, p. 614 )

Ψr+1[α] = Ψr[α] + W l
NΨr[β]

Ψr+1[β] = Ψr[α]−W l
NΨr[β]
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66. Express the decimal number −0.3125 as a binary number using sign bit and four bits
for the fraction in the format of (a) sign-magnitude, (b) ones’ complement, (c) two’s
complement. What would be the value after truncation, if only three bits are saved.

Analysis of Finite Wordlength Effects 67-69

67. In the following Figure 23, some error probability density functions of the quantization
error are depicted.

e

f(e)

e

f(e)

−∆/2 ∆/2

−∆ ∆

(b)

(c)

e

f(e) (a)

∆/2−∆/2

Figure 23: Problem 67: Error density functions.

(a) Rounding

(b) Two’s complement truncation

(c) Magnitude (one’s complement) truncation

is used to truncate the intermediate results. Calculate the expectation value of the quan-
tization error me and the variance σ2

e in each case.

E[E] =
∫∞

−∞
f(e) e de, Var[E] = E[(E − E[E])2] = E[E2]− (E[E])2

68. In this problem we study the roundoff noise in direct form FIR filters. Consider an FIR
filter of length N having the transfer function

H(z) =
N−1∑

k=0

h[k]z−k.

Sketch the direct form realization of the transfer function.

a) Derive a formula for the roundoff noise variance when quantization is done before
summations.

b) Repeat (a) for the case where quantization is done after summations, i.e. a double
precision accumulator is used.

69. The quantization errors occuring in the digital systems may be compensated by error-
shaping filters (Mitra 2Ed Sec. 9.10 / 3Ed Sec. 12.10 ). The error components are
extracted from the system and processed e.g. using simple digital filters. In this way part
of the noise at the output of the system can be moved to a band of no interest.

Consider a lowpass DSP system with a second-order noise reduction system in Figure 24.
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a) What is the transfer function of the system if infinite wordlength is used?

b) Derive an expression for the transform of the quantized output, Y (z), in terms of
the input transform, X(z), and the quantization error, E(z), and hence show that
the error feedback network has no adverse effect on the input signal.

c) Deduce the expression for the error feedback function.

d) What values k1 and k2 should have in order to work as an error-shaping system?

z−1z−1

z−1 z−1

z−1

z−1z−1

Q

k2 k1

1

2

1 −0.81

1.75

e[n]

−1

y[n]x[n]

w[n]

Figure 24: Second-order system with second-order noise reduction in Problem 69.

Multirate Digital Signal Processing 70-74

70. Consider a cosine sequence x[n] = cos(2π(f/fs)n) where f = 10 Hz and fs = 100 Hz as
depicted in the top left in Figure 25. While it is a pure cosine, its spectrum is a peak at
the frequence f = 10 Hz (top middle) or at ω = 2πf/fs = 0.2π (top right).

a) Sketch the output sequence xu[n] with circles using up-sampler with up-sampling
factor L = 2, and draw its spectra into second row. Original sequence values of x[n]
are marked with crosses. The spectrum in middle column is 0..200 Hz and in right
0..2π, i.e., 0..fs.

xu[n] =

{

x[n/L], n = 0,±L,±2L, . . .

0, otherwise
Xu(e

jω) = X(ejωL)

b) Sketch the output sequence xd[n] with circles using down-sampler with down-sampling
factor M = 2, and draw its spectra into bottom row.

xd[n] = x[nM ] Xd(e
jω) =

1

M

M−1∑

k=0

X(ej(ω−2πk)/M )

71. Express the output y[n] of the system shown in Figure 26 as a function of the input x[n].

72. Show that the factor-of-L up-sampler xu[n] and the factor-of-M down-sampler xd[n] de-
fined as in Problem 70 are linear systems.
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Figure 25: Empty figures for Problem 70. The up-sampling factor L = 2, and the down-
sampling factor M = 2. Left column: sequence x[n] with circles, fill in the sequences xu[n]
and xd[n]. X-axis: time (0 . . . 0.2 s). Middle column: Spectrum X(ejf) (10 Hz component,
100 Hz sampling frequency), fill in the spectra Xu(e

jf) and Xd(e
jf). X-axis: frequency

(0 . . . 200 Hz). Right column: Spectrum X(ejω) (2π · (10/100) = 0.2π), fill in the spectra
Xu(e

jω) and Xd(e
jω). X-axis: angular frequency (0 . . . 2π).

↑ 2

↑ 2

↓ 2

↓ 2
x[n]

w[n]

vu[n]v[n]

z−1 z−1

y[n]wu[n]

Figure 26: Multirate system of Problem 71.

↓ 3 ↑ 3
x[n]

H0(z)

H1(z)

H2(z)

y0[n]

y1[n]

y2[n]

Figure 27: Multirate system of Problem 73.

73. Consider the multirate system shown in Figure 27 where H0(z), H1(z), and H2(z) are ideal
lowpass, bandpass, and highpass filters, respectively, with frequency responses shown in
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Figure 28: (a)-(c) Ideal filters H0(z), H1(z), H2(z), (d) Fourier transform of the input of
Problem 73.

Figure 28(a)-(c). Sketch the Fourier transforms of the outputs y0[n], y1[n], and y2[n] if
the Fourier transform of the input is as shown in Figure 28(d).

74. Consider a FIR filter, whose specifications are (i) lowpass, (ii) passband ends at ωp =
0.15π, (iii) stopband starts from ωs = 0.2π, (iv) passband maximum attenuation is 1
dB, (v) stopband minimum attenuation is 50 dB. The filter is to be implemented using
truncated Fourier series method (window method) with Hamming window.

a) Sketch the specifications on paper.

b) The filter order N can be estimated using (Mitra 2Ed Table 7.2 / 3Ed Table 10.2 ):
the transition bandwith is ∆ω = |ωp−ωs|, and for Hamming window ∆ω = 3.32π/M ,
where the window w[n] is in range −M ≤ n ≤ +M . What is the minimum order N
which fulfills the specifications?

c) The cut-off frequency of the filter in the window method is defined to be ωc =
0.5 · (ωp + ωs). Derive an expression for hFIR[n] when using (a) and (b). What is
the value of hFIR[n] at n = 0?

d) Consider now another way to implement a FIR filter with the same specifications. In
the interpolated FIR filter (IFIR) (Mitra 2Ed Sec. 10.3, p. 680 / 3Ed Sec. 10.6.2,
p. 568 ) the filter is a cascade of two FIR filters HIF IR(z) = G(zL) · F (z). Using
the factor L = 4 compute the order of HIF IR(z) = G(zL) · F (z) and compare to the
original filter HFIR(z).
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T-61.3010 Digital Signal Processing and Filtering
Solutions for example problems for spring 2007.
Corrections and comments to t613010@cis.hut.fi, thank you!

Solutions

1. Problem:

a) Express z = 2e−jπ in rectangular coordinates.

b) Express z = −1 + 2j in polar coordinates.

c) Which (two) angles satisfy sin(ω) = 0.5?

d) What are z + z∗, |z + z∗|? and ∠(z + z∗)? What are zz∗, |zz∗|? and ∠zz∗?

Solution:

a) “Brute force” using Euler’s formula and cos(−x) = cos(x) and sin(−x) = − sin(x),

z = 2e−jπ = 2(cos(−π) + j sin(−π)) = 2(cos(π)− j sin(π)) = −2

or using directly the unit circle and seeing that when the angle is −π in radians
(−180 degrees) then e−jπ = −1.

b) The radius r =
√

(−1)2 + 22 =
√

5 ≈ 2.2 and the angle in radians θ = π −
arctan(2/1) ≈ 2.03 ≈ 0.65π. So, z = −1 + 2j =

√
5 ej(π−arctan(2)) ≈ 2.2 e2.03j .

Note! Always check the right quarter in the figure.

c) From Figure 29, ω1 = arcsin(0.5) = π/6 and ω2 = π − arcsin(0.5) = 5π/6

d) Summing can be graphically considered as concatenation of vectors. z+z∗ = r(ejω +
e−jω) = 2r cos(ω) ∈ R. From previous, |z + z∗| = |2r cos(ω)| and ∠(z + z∗) = 0.
Using Carthesians, z + z∗ = 2x.

Product of complex number and its complex conjugate: zz∗ = (rejω)(re−jω) =
r2ej(ω−ω) = r2, and |zz∗| = r2 and ∠zz∗ = 0.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

y
=r sin(θ)

x = r cos(θ)

z = x + yj

  = r ejθ

r

θ

z*

Suorakulmainen ja polaarikoordinaatisto

−2 −1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 29: Problem 1, unit circle in complex plane (left), and points for (a), (b), and (c) (right).
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2. Problem: Euler’s formula is ejθ = cos(θ)+ j · sin(θ). Express with cosines and sines: (a)
ejθ + ej(−θ), (b) ejθ − ej(−θ), (c) ejπ/8 · ejθ − ej(−π/8) · ej(−θ).

Solution: Euler’s formula ejθ = cos(θ)+j ·sin(θ) can be thought as a phasor going round

on the unit circle. It is unit circle because |ejθ| =
√

cos2 + sin2 = 1 always. Real part of
ejθ is cosine, and imaginary part is sine.

a) Sum of exponentials at positive frequency θ and negative frequency −θ gives a real
cosine at frequency θ.

ejθ = cos(θ) + j · sin(θ)

ej(−θ) = cos(−θ) + j · sin(−θ)

= cos(θ)− j · sin(θ)

Adding the first and list row we get

ejθ + ej(−θ) = 2 cos(θ) ∈ R

b) In the same way as in (a)

ejθ = cos(θ) + j · sin(θ)

ej(−θ) = cos(−θ) + j · sin(−θ)

= cos(θ)− j · sin(θ)

Substracting the last from the first gives

ejθ − ej(−θ) = 2j sin(θ) ∈ C

which is pure complex. In other words, cosine and sine are:

cos(θ) = 0.5 · ejθ + 0.5 · ej(−θ)

sin(θ) = −0.5j · ejθ + 0.5j · ej(−θ)

where 1/(2j) = −j/2 as shown in Problem 3(e).

c) This can be thought as phase shift. First, use the rule ex · ey = ex+y,

ejθ · ejπ/8 = ej(θ+π/8)

e−jθ · e−jπ/8 = e−j(θ+π/8)

Now, we see using (b)

ejπ/8 · ejθ − ej(−π/8) · ej(−θ) = 2j sin(θ + π/8)

Notice that each real cosine with positive angle and each real sine with positive angle
can be replaced by two complex exponentials with positive and negative angles. When
considering Fourier analysis, the real cosine signal with frequency fc can be represented
in the spectrum with a peak at fc (in one-side spectrum) or with peaks at fc and −fc

(in two-side spectrum). Vice versa, if the two-side spectrum is not symmetric, then the
signal is not real but complex. More about this later in Fourier analysis.
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3. Problem: Consider the following three complex numbers z1 = 3 + 2j, z2 = −2 +4j, and
z3 = −1− 5j. (a) Draw the vectors z1, z2, and z3 separately in complex plane. (b) Draw
and compute the sum z1 +z2 +z3. (c) Draw and compute the weighted sum z1−2z2 +3z3.
(d) Draw and compute the product z1 · z2 · z3. (e) Compute and reduce the division z1/z2.

Solution:

a) Each number can be thought as a vector starting from origo and the other end at
point z. See Figure 30.

b) Real parts and imaginary parts can be summed separately z = (3 − 2 − 1) + (2 +
4 − 5)j = −j. This can be expressed in polar coordinates z = ej(−π/2), i.e. on unit
circle (radius 1) and the angle one fourth a circle clockwise.

c) If you are computing without computer, be attentive and check twice that all coeffi-
cients are correctly reduced. z = (3 + 2j)− 2(−2 + 4j) + 3(−1− 5j) = 3 + 2j + 4−
8j − 3 − 15j = 4 − 21j. Again, in polar coordinates r =

√

(4)2 + (−21)2 ≈ 21.38.
The angle θ = arctan((−21)/(4)) ≈ −1.38 ≈ −0.44π.

If z = −4 − 21j, then θ = arctan((−21)/(−4)) ≈ −π + 1.38 ≈ −1.76 ≈ −0.56π.
Notice that now z is in the third quarter, so the angle 1.38 that calculator gives is
NOT the correct answer.

d) When using rectangular coordinates, multiply terms normally, j2 = −1. The product
in polar coordinates means multipling the lengths of vectors and summing the angles.

z = ((3 + 2j) · (−2 + 4j)) · (−1− 5j)

= (−14 + 8j) · (−1− 5j)

= 54 + 62j

=
√

9 + 4 ·
√

4 + 16 ·
√

1 + 25 · ej(arctan(2/3)+arctan(4/(−2))+arctan((−5)/(−1)))

≈ 82.2 · ej(0.27π)

e) The denominator is now complex. If both sides are multiplied by the complex conju-
gate then the denominator becomes real. Just as in Problem 1 z ·z∗ = |z|2 = r2 ∈ R.
Notice also that 1/j is −j ((1/j) · (j/j) = j/j2).

z = (3 + 2j)/(−2 + 4j) | · (−2− 4j)/(−2− 4j)

= (2− 12j)/20
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Figure 30: The vectors in Problem 3(a) and (b).

T-61.3010 DSP 2007 (B+C) 30/152 SOLUTIONS

4. Problem:

Examine a complex-valued function

H(ω) = 2− e−jω

where ω ∈ [0 . . . π] ∈ R.

a) Compute values of Table 4 with a calculator. Euler: ejω = cos(ω) + j sin(ω).

b) Draw the values at ω = {0, π/4, . . . , π}. Interpolate.

c) Sketch |H(ω)| as a function of ω. Interpolate.

d) Skecth ∠H(ω) as a function of ω. Interpolate.

Solution: In this course complex-valued functions are widely used, e.g. as frequency
responses of the systems or in Fourier transforms. The argument of the function is real-
valued ω ∈ R, but the value of the function is (normally) complex H(ω) ∈ C due to
complex factor ejω. In case of the transfer function H(z) both z and H(z) are complex-
valued.

a) Sometimes it is possible to simplify H(ω). However, normally it is useful to write
down a suitable format for the use of the calculator. In this case, Carthesian coor-
dinate system with x and y is used:

H(ω) = 2− e−jω = 2− (cos(−ω) + j sin(−ω))

= 2− cos(ω)
︸ ︷︷ ︸

x

+j sin(ω)
︸ ︷︷ ︸

y

The variables r and θ of the polar coordinate system are received from the right-
angled triangle: r =

√

x2 + y2 and θ = arctan(y/x).

On the other hand, in this case it is easily seen that there is only a circle (e−jω)
whose origin is at z = 2.

ω x = Real(H(ω)) y = Imag(H(ω)) r = |H(ω)| θ = ∠H(ω)

0 1.0000 0 1.0000 0
π/4 1.2929 0.7071 1.4736 0.1593π
π/2 2.0000 1.0000 2.2361 0.1476π

3π/4 2.7071 0.7071 2.7979 0.0813π
π 3.0000 0 3.0000 0

Table 4: Problem 8: values of a complex-valued function in rectangular (x, y) and polar (r, θ)
coordinates. The row 3π/4 is highlighted for Figure 31.

b) Take the columns x and y of Table 4 and sketch the curve like in Figure 31(left).
There is a line drawn in the plot, from the origo to a point related to ω = 3π/4, i.e.
(x, y). The length of the line is r and the angle between the line and x-axis is θ, so
it can be written in polar coordinates r ejθ.

c) Take the column r of Table 4 and sketch the curve like in Figure 31(middle). The
plot shows the distance r from the origo to a point at given value of ω.

d) Take the column θ of Table 4 and sketch the curve like in Figure 31(right). The plot
shows the angle θ between the origo and a point at given value of ω.
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Figure 31: Problem 8: Plots of a complex-valued function. Left, H(ω) in complex plane; middle,
absolute values |H(ω)|; and right, angle ∠H(ω). The case when ω = 3π/4 is highlighted.

5. Problem:

a) Estimate A, f, θ for the cosine x1(t) in Figure 32(a).

b) Sketch a cosine x2(t), with A = 2, angular frequency 47 rad/s and angle −π/2.

c) Express x2(t) in (b) using exponential functions.

Solution: There are a lot of variation in symbols in different signal processing books and
texts. There are probably also variation in these exercises. However, we try to use the
following symbols listed in Table 5.

symbol units meaning
f Hz frequency
Ω rad/s angular frequency, Ω = 2πf
ω rad normalized angular frequency, ω = 2π(Ω/Ωs)
fMATLAB 1 normalized Matlab frequency, fMATLAB = 2f/fs

Table 5: Problem 5, symbols of frequencies. fs refers to sampling frequency, and Ωs = 2πfs.

A cosine signal can be represented using its angular frequency Ω or frequency f , amplitude
A and phase θ:

x(t) = A cos(Ωt + θ) = A cos(2πft + θ)

For a discrete sequence of numbers

x[n] = x(t)|t=nTs = x(t)|t=n/fs = A cos(2π(f/fs)n + θ) = A cos(ωn + θ)

where Ts is sampling interval (period), fs sampling frequency, and ω (normalized) angular
frequency.

a) Cosine oscillates between −0.8 and 0.8, so A = 0.8. There is no phase shift, θ = 0.
There is one oscillation in 0.2 seconds, so there are 5 periods in one second, f = 5
Hz, or Ω = 2πf = 10π rad/s.

Hence, x1(t) = 0.8 cos(10πt).

b) x2(t) can be written directly x2(t) = 2 cos(47t− π/2).

If Ω = 47 rad/s, then f ≈ 7.5 Hz. In 0.1 seconds there are 0.75 periods. At t = 0,
x2(0) = 2 cos(−π/2) = 0, and increasing. Note that cos(Ωt − π/2) ≡ sin(Ωt). The
curve is plotted in Figure 32(b).
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c) Using Euler’s formula, and properties of cosine (even function f(−x) = f(x)) and
sine (odd function f(−x) = −f(x)),

ejω = cos(ω) + j sin(ω)

+ e−jω = cos(ω)− j sin(ω)

ejω + e−jω = 2 cos(ω)

ejω = cos(ω) + j sin(ω)

+ − e−jω = − cos(ω) + j sin(ω)

ejω − e−jω = 2j sin(ω)

Now, it can be seen that

x2(t) = 2 cos(47t− π/2)

= ej(47t−π/2) + e−j(47t−π/2)

which can be even “simplified” to x2(t) = j[e−j47t − ej47t].
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Figure 32: Cosine x1(t) (left) and x2(t) (right) in Problem 5.
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6. Problem:

a) Compute with a calculator: log8 7.

b) The power of signal is attenuated from 10 to 0.01. How much is the attenuation in
decibels?

c) Sketch the curve p(x) =
∑+N

k=−N kx for various N .

d) Consider h(n) = sin(0.75πn)/(πn). What is h(0)?

e) Modulo-N operation for number x is written here as < x >N . What is < −4 >3?

f) What is the binary number (1001011)2 as a decimal number?

Solution:

a) log8 7 = loge 7/ loge 8 ≈ 1.9459/2.0794 ≈ 0.936.

Sometimes it is useful to convert, e.g., 22007 to decimal base: 22007 = 10x, taking log10

on both sides: x = 2007 log10 2 ≈ 604.1672. Now 100.1672 ≈ 1.4696, which finally
gives 22007 ≈ 1.5 · 10604.

b) Decibel scales are widely used to compare two quantities. The decibel difference
between two power levels, ∆L, is defined in terms of their power ratio W2/W1 (p.
99, Rossing et al., The Science of Sound, 3rd Edition, Addison Wesley)

∆L = L2 − L1 = 10 log10 W2/W1

Now the power (square) of signal is attenuated from 10 to 0.01, so the signal is
attenuated by 30 dB:

10 log10(0.01/10) = 10 log10 10−3 = −30

In case of computing amplitude response |H(ejω)|, e.g. in Matlab directly from the
equation or with the command freqz, the values are squared for decibels

10 log10 |(H/H0)|2 = 20 log10 |(H/H0)|

c) If Σ confuses, open the expression! There is hardly anything to draw!

p(x) =
+N∑

k=−N

kx = (−N)x + . . . + (−2)x + (−1)x + 0x + x + 2x + . . . + Nx

≡ 0, ∀N, x

d) Sinc-function is very useful in the signal processing, and it is defined sinc(x) =
sin(πx)/(πx). Also it is known that sin(x)/x → 1, when x → 0, and with sinc-
function sinc(0) = 1. Fourier-transform of a rectangular (box) signal produces spec-
trum with shape of sinc-function, and vice versa, a signal like sinc-function has a
spectrum of rectangular (box) shape.

Note that the result of the problem is not 1 nor 0,

h(n) = sin(0.75πn)/(πn) = 0.75 sin(0.75πn)/(0.75πn) = 0.75 sinc(0.75n)

h(0) → 0.75
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e) See also “circular shift of a sequence” (Mitra 2Ed Sec. 3.4.1, p. 140 / 3Ed Sec.
5.4.1, p. 244 ). In the operation m modulo N , or, < m >N= r = m + kN , we find
an integer k so that r is in the range 0 . . . N − 1. Now for < −4 >3 we find k = 2

< −4 >3=< −1 >3=< 2 >3= 2 = −4 + 2 · 3

Hence, < −4 >3= 2.

A circular buffer is implemented in the instruction sets of many DSPs. Assume that
there is a buffer of size 1024 bytes, with addresses 0x0000 to 0x03FF in hexadecimals.
New 8-bit (byte) samples are read into a buffer where an address counter (pointer)
is increased by one each time. When the counter has the value 0x03FF , the next
value is < 0x0400 >0x0400= 0x0000. In other words, the oldest sample is replaced by
the newest. See Figure 33 for figures of linear and circular buffers.

0x0001

0x0002

0x03FD

0x03FE

0x03FF

0x0000

0x0000

0x03FD
0x03FE

0x03FF
0x0001

0x0002

Figure 33: Problem 6: linear and circular buffer.

f) The result depends on which number representation is chosen. In case of multi-byte
data types numbers can be saved in big-endian or little-endian manner. DSPs are
divided to fixed-point and floating-point processors (IEEE 754, sign bit, exponent
and mantissa fields). Least significant bit (LSB) is normally the last bit, most
significant bit (MSB) leftmost. Negative numbers and fractions has to be considered,
too. (Mitra 2Ed Sec. 8.4 / 3Ed Sec. 11.8 ) deals with all aspects of the number
representation.

When both negative and positive b-bit fraction values are needed, 1001011 is con-
sidered to have a sign bit first, and then fraction bits, like s∆a−1a−2 . . . a−b. Table 6
contains some possible results with values b = 6 and s = 1, see also (Mitra 2Ed Table
8.1, p. 557 / 3Ed Table 11.1, p. 638 ).

non-negative fixed-point 1001011 1 · 64 + 1 · 8 + 1 · 2 + 1 · 1 = 75

sign-magnitude 1∆001011 (−2s + 1)
∑b

i=1 a−i2
−i = −11/64 ≈ −0.1719

ones’ complement 1∆001011 −s · (1− 2−b) +
∑b

i=1 a−i2
−i = −52/64 ≈ −0.8125

two’s complement 1∆001011 −s +
∑b

i=1 a−i2
−i = −53/64 ≈ −0.8281

offset binary 1∆001011 +11/64 ≈ +0.1719

Table 6: Problem 6: Examples on binary number representations with values b = 6 and s = 1.
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7. Problem:

a) Compute roots of H(z) = z2 + 2z + 2.

b) Compute roots of H(z) = 1 + 16z−4.

c) Compute long division (4z4 − 8z3 + 3z2 − 4z + 6)/(2z − 3).

Solution: In this course roots of transfer function H(z) provide information on the
behaviour of the filter. The order of the rational polynomial H(z) = B(z)/A(z) is the
maximum of the orders of B(z) and A(z).

a) The order of H(z) is 2. Using the equation for solving the second-order polynomials
z = (−b±

√
b2 − 4ac)/(2a), the roots are z1 = −1 + j and z2 = −1− j. This can be

assured by multiplication (z − z1)(z − z2) = z2 − (z1 + z2)z + z1z2 = z2 + 2z + 2.

b) The order of H(z) is 4. Now, when setting H(z) = 1 + 16z−4 = 0, the equation can
be multiplied by z4 on both sides. Hence, z4 + 16 = 0 and z = 4

√
−16. Because

−16 = 24 · ej(π+2πk), we get four roots using N
√

z = | N
√

r| · ej(2π k/N+θ/N).

Roots: zk = 2 ej(2πk/4+π/4), with k = 0 . . . 3. Again, z4
1 = (2ejπ/4)4 = 24ej4π/4 =

16ejπ = −16, and similarly other zk result to −16. In Figure 34 all four roots are
plotted with circles.

−2 0 2
−2

−1

0

1

2 z
1
 = 1.41 + 1.41j

r
1
 = 2, θ

1
 = π/4

Figure 34: Problem 7(b): four roots of H(z) = 1 + 16z−4.

c) Division operation can be applied to polynomials just as for normal numbers. Polyno-
mial product and division have a very close connection to the convolution operation.
For example, in Matlab there is the same function conv for the both operations.

2z3 − z2 − 2

2z − 3
)

4z4 − 8z3 + 3z2 − 4z + 6
− 4z4 + 6z3

− 2z3 + 3z2

2z3 − 3z2

− 4z + 6
4z − 6

0
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8. Problem: Examine a complex-valued function (z ∈ C)

H(z) =
1 + 0.5z−1 + 0.06z−2

1− 1.4z−1 + 0.48z−2

(a) Multiply both sides by z2. (b) Solve z2+0.5z+0.06 = 0. (c) Solve z2−1.4z+0.48 = 0.
(d) H(z) can be written: H(z) = K · ((z − z1) · (z − z2)) / ((z − p1) · (z − p2)). What are
the five values? (e) What are the coefficients of H(z). What are the roots of H(z)? What
is the order of the numerator polynomial of H(z)? What is the order of the denominator
polynomial of H(z)?

Solution: In this course complex-valued functions are widely used. In case of the transfer
function H(z) both z and H(z) are complex-valued. A typical form of a transfer function
of a FIR filter is

H(z) = b0 + b1z
−1 + b2z

−2 + . . . + bMz−M

and that of an IIR filter is

H(z) =
b0 + b1z

−1 + b2z
−2 + . . . + bMz−M

1 + a1z−1 + a2z−2 + . . . + aNz−N

a) Multiplication H(z) · (z2/z2) does not change the values of H(z), but it is more
convenient to work with positive exponentials:

H(z) =
z2 + 0.5z + 0.06

z2 − 1.4z + 0.48

b) Using the formula for second order polynomials az2 + bz + c = 0

z =
−b±

√
b2 − 4ac

2a

we get easily the roots z1 = −0.3, z2 = −0.2. In Matlab you can write P = [1 0.5

0.06]; roots(P).

c) Similarly, the roots p1 = 0.8, p2 = 0.6.

d) Using the notation from (b) and (c),

H(z) = K · (z + 0.3) · (z + 0.2)

(z − 0.8) · (z − 0.6)

= K · z
2 + 0.5z + 0.06

z2 − 1.4z + 0.48

we can scale H(z) correctly by choosing K = 1.

e) In this case the coefficients were {1, 0.5, 0.06} in numerator polynomial (upper part),
and {1, −1.4, 0.48} in denominator polynomial (bottom part).

Roots were computed in (b) and (c). In DSP we call the roots of numerator poly-
nomial as “zeros”. The roots of denominator polynomial (bottom part) are “poles”.

As seen in (d) the same function H(z) can be expressed either using coefficients
or roots (and scaling factor). In the filter analysis the positions of roots give some
information on the nature of the filter. More about this in Problem 46.
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9. Problem:

a) Decompose f(x) = 1/(x2 + 1)

b) Decompose H(z) = (0.4− 0.2z−1)/(1− 0.1z−1 − 0.06z−2)

Solution: In this course partial fractions are used when finding an explicit form of the
impulse response h[n] from the transfer function H(z). In the list of Fourier-transform
pairs there are only inverse transforms for the first order expressions. So, if the trans-
fer function is of second-order or higher, it has to be converted to a sum of first-order
expressions by partial fraction decomposition (expansion).

Decomposition requires taking roots of a polynomial, so it is possible to derive by hands
only in some cases, e.g., 1/(x2 + 3x + 2) = 1/(x + 1)− 1/(x + 2). For more complicated
cases, see (Mitra 2Ed Sec. 3.9 / 3Ed Sec. 6.4 ), or any other math reference. When using
Matlab, the command is residuez.

Rules of thumb, (1) compute roots of the denominator polynomial, (2) write down the sum
of first-order rational polynomials, (3) compute the unknown constants (equation pairs).
Note that the decomposition in not unique, but there are several different expressions
which lead to the same result.

a) Find the roots of the denominator: x2 + 1 = 0 ⇒ x1 = −j, x2 = j. Roots can be
complex, too! Hence,

f(x) =
A

x− x1

+
B

x− x2

=
A

x + j
+

B

x− j

=
A(x− j) + B(x + j)

x2 + jx− jx + 1
=

x(A + B) + j(−A + B)

x2 + 1

⇒
{

A + B = 0

−A + B = −j
⇒
{

A = 0.5j

B = −0.5j

Finally,

f(x) =
0.5j

x + j
− 0.5j

x− j

b) In this course z−1 corresponds a unit delay in time-domain. The numerator poly-
nomial can divided and z−1 terms can be taken to front, and the partial fraction is
done only once for P (z), whose numerator polynomial is plain 1,

H(z) =
0.4− 0.2z−1

1− 0.1z−1 − 0.06z−2

= 0.4 · 1

1− 0.1z−1 − 0.06z−2
︸ ︷︷ ︸

P (z)

−0.2z−1 · 1

1− 0.1z−1 − 0.06z−2
︸ ︷︷ ︸

P (z)

The denominator of P (z) is set to zero and multiplied by z2: z2 − 0.1z − 0.06 = 0.
The roots are z1 = 0.3 and z2 = −0.2.

P (z) =
A

1− 0.3z−1
+

B

1 + 0.2z−1
=

A + 0.2Az−1 + B − 0.3Bz−1

1− 0.1z−1 − 0.06z−2

Now we get a pair of equations

{

A + B = 1

0.2A− 0.3B = 0
⇒
{

A = 0.6

B = 0.4
and finally,

H(z) = 0.4 ·
( 0.6

1− 0.3z−1
+

0.4

1 + 0.2z−1

)

− 0.2z−1 ·
( 0.6

1− 0.3z−1
+

0.4

1 + 0.2z−1

)
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10. Problem:

a) What is sum of series S =
∑∞

k=0(0.5)k.

b) S =
∑∞

k=10(−0.6)k−2.

c) S =
∑∞

k=2(0.8
k−2 · e−jωk).

Solution: Sum of geometric series is applied in Fourier- and z-transforms. When the
ratio q in geometric series is |q| < 1, the sum of series converges to

∑∞
k=0 qk = 1/(1− q),

and correspondingly
∑N

k=0 qk = (1− qN+1)/(1− q).

a) Directly from the formula with q = 0.5, S = 1/(1− 0.5) = 2.

b) Open Σ expression if it seems to be difficult.

S =

∞∑

k=10

(−0.6)k−2 = (−0.6)8 + (−0.6)9 + (−0.6)10 + . . .

=

∞∑

k=8

(−0.6)k

=

∞∑

k=0

(−0.6)k −
7∑

k=0

(−0.6)k

= 1/(1 + 0.6)− (1− (−0.6)8)/(1 + 0.6) = (−0.6)8/1.6 ≈ 0.0105

c) Discrete-time Fourier-transform is defined as

X(ejω) =

∞∑

n=−∞

x[n]e−jωn

S =
∞∑

k=2

(0.8k−2 · e−jωk) |k = m + 2

=

∞∑

m=0

(0.8m · e−jωm · e−j2ω)

= e−j2ω ·
∞∑

m=0

(0.8e−jω)m

= e−j2ω · 1

1− 0.8e−jω

The term e−j2ω can be seen as a time shift (delay) of two units.
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11. Problem:

a) List all integral transforms that are used in previous signal processing courses.

b) Compute the integral X(Ω) =
∫ 4

0
e−jΩtdt.

Solution: A general integral transform is defined by

F (ω) =

∫ b

a

f(t)K(ω, t)dt

where K(ω, t) is an integral kernel of the transform, see e.g. (Mitra 2Ed Sec. - / 3Ed
Sec. 5.1 ).

a) In our case the time-domain signal is transformed to the frequency-domain in order
to improve the analyse. For example, the structure of a periodic signal can be seen
easily in the spectrum.

Periodic signals can be represented as Fourier-series. Laplace- and z-transforms
are more general than Fourier-transforms. There are versions for both analog and
digital signals as well as for one-dimensional and two-dimensional signals. Certain
transforms are used in particular applications, say, discrete cosine transform is used
in JPEG and wavelet transform in JPEG2000.

b) Now x(t) can be considered as a rectangular signal, and its Fourier transform is a
sinc-function.

X(Ω) =

∫ 4

0

e−jΩtdt =

4/

0

(1/(−jΩ))e−jΩt = (1/(−jΩ))(e−j4Ω − 1)

= (1/(−jΩ))(−e−j2Ω)(ej2Ω − e−j2Ω) = (1/(−jΩ))(−e−j2Ω)(2j sin(2Ω))

= 4e−j2Ω(sin(2Ω)/(2Ω)) = 4e−j2Ω sinc(2Ω/π)
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12. Problem: Using notation WN = e−j2π/N and matrix

D4 =







1 1 1 1
1 W 1

4 W 2
4 W 3

4

1 W 2
4 W 4

4 W 6
4

1 W 3
4 W 6

4 W 9
4







compute X = D4x, when x =
[
2 3 5 −1

]T

Solution: We see that

|WN | = |e−j2π/N | = | cos(2π/N)− j sin(2π/N)| =
√

cos(2π/N)2 + sin(2π/N)2 = 1

That is, the points W k
N are lying clockwise on the unit circle. When N = 4, the angle

between each point is π/2:

W 0
4 = 1 W 1

4 = −j W 2
4 = −1 W 3

4 = j
W 4

4 = 1 W 5
4 = −j W 6

4 = −1 W 3
7 = j

W 8
4 = 1 W 9

4 = −j

The square matrix D4 is

D4 =







1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j







Size of matrix D4 is 4 rows and 4 columns (4× 4), and that of column vector x is (4× 1).
In the matrix product X = D4x dimensions must agree: (4× 4)(4× 1), and the final size
of X is (4× 1).

X = D4x =







1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j













2
3
5
−1







=







1 · 2 + 1 · 3 + 1 · 5 + 1 · (−1)
1 · 2− j · 3− 1 · 5 + j · (−1)
1 · 2− 1 · 3 + 1 · 5− 1 · (−1)
1 · 2 + j · 3− 1 · 5− j · (−1)







=







9
−3− 4j

5
−3 + 4j







We have computed here discrete Fourier transform (DFT) for a real sequence {2, 3, 5, −1}.
The result, here {9, −3−4j, 5, −3+4j}, is often complex-valued. There are several sym-
metric properties of DFT that are discussed later.

The matrix D∗
4 (Hermitian) is transpose of D4 with complex-conjugate values:

D∗
4 =







1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j
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13. Problem: Consider an analog signal x(t) = π · cos(2πt). Plot the analog signal, the
discrete-time signal sampled with 5 Hz, and the digital signal with accuracy to integer
numbers.

Solution: Analog signal: both t and x(t) ∈ R. You can measure the outside tempera-
ture at any time exactly.

Discrete-time signal: signal x[n] may get any values at certain time moments, x[n] ∈
R, n ∈ Z. Often explained as a sampled version of analog signal.

Digital signal: signal x[n] is discrete also with amplitude values, n, x[n] ∈ Z.

Here x(t) = π · cos(2πt). The angular frequency is Ω = 2π rad/s and the frequency f = 1
Hz while Ω = 2πf . The period of the signal is T = 1/f = 1 second.

The sampling frequency is fs = 5 Hz, i.e., samples are taken every Ts = 0.2 seconds:
t← nTs. This gives a discrete-time sequence

x[n] = π · cos(0.4πn)

where the normalized angular frequency is ω = 0.4π rad/sample.

The numeric values are below in a table. The plots in Figure 35, where in (a) t runs from
0 to 2.5 seconds, and in (b) and (c) n correspondingly from 0 to 12.

t n (a) x(t) (b) x[n] (c) x[n]
0 0 π · cos(0) = π π Int{π} = 3
0 < t < 0.2 ∄ cos(2πt) ∄ ∄
0.2 1 π · cos(0.4π) ≈ 0.9708 ≈ 0.9708 Int{0.9708} = 1
1 5 π · cos(2π) = π π Int{π} = 3

0 0.5 1 1.5 2 2.5
−4

−3

−2

−1

0

1

2

3

4

x(1)=π

0 2 4 6 8 10 12
−4

−3

−2

−1

0

1

2

3

4
x[0]=π

x[1]=cos(0.4π)

x[2]

x[5]=π

0 2 4 6 8 10 12
−4

−3

−2

−1

0

1

2

3

4
x[0]=3

x[1]=1

x[3]=−3

x[5]=3

Figure 35: Problem 13: (a) analog signal, (b) discrete-time signal, (c) digital signal.

Definitions may vary from book to book. Discrete-time or digital signal is often called a
sequence instead of signal.

In practice, A/D converted discretizes the analog signal into digital signal with a certain
accuracy. For instance, in audio recordings (CD quality) the sampling frequency is 44100
Hz (44100 samples each second) and the each data sample is expressed with 16 bits, i.e.,
having 216 = 65536 discrete levels.

Note also that π is an irrational number which cannot be expressed accurately with finite
number of bits.
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14. Problem: The unit impulse function δ[n] and the unit step function µ[n] (or u[n]) are
defined

δ[n] =

{

1, when n = 0

0, when n 6= 0
µ[n] =

{

1, when n ≥ 0

0, when n < 0

Sketch the following sequences around the origo (a) x1[n] = sin(0.1πn), (b) x2[n] =
sin(2πn), (c) x3[n] = δ[n − 1] + δ[n] + 2δ[n + 1], (d) x4[n] = δ[−1] + δ[0] + 2δ[1], (e)
x5[n] = µ[n]− µ[n− 4], (f) x6[n] = x3[−n + 1].

Solution: There are different ways to draw discrete-time signals. Here we use “pins”
or “stems”, which emphasizes that the sequence is discrete-time. Compute the values for
each n using sin(), δ[n], µ[n] functions, for example, in (c)

n δ[n− 1] δ[n] 2δ[n + 1] x[n]
-2 δ[−2− 1] = 0 δ[−2] = 0 2δ[−2 + 1] = 0 0 + 0 + 0 = 0
-1 δ[−1− 1] = 0 δ[−1] = 0 2δ[−1 + 1] = 2 0 + 0 + 2 = 2
0 δ[0− 1] = 0 δ[0] = 1 2δ[0 + 1] = 0 0 + 1 + 0 = 1
1 δ[1− 1] = 1 δ[1] = 0 2δ[1 + 1] = 0 1 + 0 + 0 = 1
2 δ[2− 1] = 0 δ[2] = 0 2δ[2 + 1] = 0 0 + 0 + 0 = 0

See the results in Figure 36. Note that in (b) the argument for the sine function is always
2π-multiple. In (d) there are only constants δ[−1] = δ[1] = 0 and δ[0] = 1 from the
definition.

The discrete-time signal is purely a sequence of numbers, e.g. in (c), x3[n] = {2, 1, 1},
where the underlined position is at n = 0. Non-zero values can be also listed, e.g.,
x3[−1] = 2, x3[0] = 1, and x3[1] = 1.

−10 0 10
−1

0

1

(a)

−5 0 5
−1

0

1

(b)

−2 −1 0 1 2

0

1

2

(c)

−5−4−3−2−1012345

0

0.5

1

(d)

−3−2−1 0 1 2 3 4 5

0

0.5

1

(e)

−2 −1 0 1 2

0

1

2

(f)

Figure 36: Sequences of Problem 14. Top row: (a)-(c), bottom: (d)-(f).
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15. Problem: Which of the following signals are periodic? Define the length of the fundamen-
tal period and frequency for periodic signals. (a) x(t) = 3 cos(8π

31
t), (b) x[n] = 3 cos(8π

31
n),

(c) x(t) = cos(π
8
t2), (d) x[n] = 2 cos(π

6
n−π/8)+sin(π

8
n), (e) x[n] = {. . . , 2, 0, 1, 2, 0, 1, 2, 0, 1, . . .},

(f) x[n] =
∑+∞

k=−∞ δ[n− 4k] + δ[n− 4k − 1].

Solution: Continuous-time signal x(t) is periodic, if there exists period T ∈ R, for
which x(t) = x(t + T ), ∀t. The fundamental period is the smallest T0 > 0.

Discrete-time signal (sequence) x[n] is periodic, if there exists period N ∈ Z, for which
x[n] = x[n + N ], ∀n ∈ Z. The fundamental period is the smallest N0 > 0.

The analysis is often done for sines or cosines which are 2π-periodic. Replace t by t + T
(n by n + N) and try if the equation x(t) = x(t + T ) holds. Note that the amplitude
or phase shift does not have effect on periodicity. The exponential function ejω is also
2π-periodic.

Another way to find the period of sine is to express the function in form of x(t) =
sin(2π · f · t) where f is frequency (Ω = 2πf is angular frequency). Then T = 1/f .

If there is a sum of cosines, like in (d), one has to find period T0 (N0), to which all periods
of individual cosines are multiples. Correspondingly, in frequency domain one has to find
a fundamental frequency f0, with which all individual frequencies can be represented.

a) Periodic. When T = (31/4)k, then the original cosine argument is added 2π-multiple,
and x(t) = x(t+T ) holds. The fundamental period is the shortest period T0 = 31/4.

x(t) = 3 cos(
8π

31
t) = 3 cos(

8π

31
(t + T )) = 3 cos(

8π

31
t +

8π

31
T )

= 3 cos(
8π

31
t + 2π(

4

31
T ))

b) Periodic, N0 = (31/4) · k. The period N0 has to be integer, so the smallest possible
k = 4 gives the length of the fundamental period N0 = 31.

x[n] = 3 cos(
8π

31
n) = 3 cos(

8π

31
(n + N)) = 3 cos(

8π

31
n +

8π

31
N)

= 3 cos(
8π

31
n + 2π(

4

31
N))

Notice also the difference of the results in (a) and (b), where x(t) = x(t + (31/4)),
but x[n] = x[n + 31]. The signals are plotted in the same axis in Figure 37.

0 5 10 15 20 25 30 35
−3

−2

−1

0

1

2

3

(a) vs (b): x(t) = 3cos(8π / 31 t) vs x[n] = 3cos(8π / 31 n)

n, t

T=31/4
N=31

x(t)
x[n]

Figure 37: A visualization of the difference of fundamental periods of similar looking analog
and discrete-time signals in Problem 15(a) and (b). T0 = 31/4 but N0 = 31.
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c) Non-periodic, the latter term depends on t. The result can be also seen in Fig-
ure 38(c).

x(t) = cos(
π

8
t2) = cos(

π

8
(t + T )2) = cos(

π

8
t2 +

π

8
(2tT + T 2))

= cos(
π

8
t2 + 2π(

tT

8
+

T 2

16
))

d) Periodic, N0 = 48. The fundamental period is the least common multiple (LCM)
of individual periods N1 = 12, N2 = 16 ⇒ N0 = 4N1 = 3N2 = 48. On the other
hand the fundamental angular frequency is the greatest common divisor (GCD)
of individual frequencies (ω = 2π/N): ω1 = π/6, ω2 = π/8 ⇒ ω0 = π/24,⇒
ω1 = 4ω0, ω2 = 3ω0. More about computing LCM and GCD can be found, e.g.
“Beta, Mathematics Handbook for Science and Engineering”. There are Matlab
commands lcm and gcd, too.

x[n] = 2 cos(
π

6
n− π/8) + sin(

π

8
n) = 2 cos(2π

1

12
n− π/8) + sin(2π

1

16
n)

e) (Assume that) the period is N0 = 3, i.e. x[0] = x[±3k] = 2, x[1] = x[±3k + 1] = 0,
x[2] = x[±3k + 2] = 1, where the integer k > 0.

f) N0 = 4. “Open” the sequence if you do not see it directly:

x[n] =

+∞∑

k=−∞

δ[n− 4k] + δ[n− 4k − 1]

= . . . + δ[n + 4] + δ[n + 4− 1]
︸ ︷︷ ︸

k=−1

+ δ[0] + δ[n− 1]
︸ ︷︷ ︸

k=0

+ δ[n− 4] + δ[n− 4 + 1]
︸ ︷︷ ︸

k=1

+ . . .

= {. . . , 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, . . .}

Periodicity of signal is often easy to see from the signal plot, see Figure 38. The signal (c)
is clearly not periodic. Real-life signals (e.g. speech signal) are seldom periodic in strict
sense; almost periodic signals are sometimes called “quasi-periodic”.

0 20 40

−2

0

2

(a
)

0 20 40

−2

0

2

(b
)

0 5 10

−1

−0.5

0

0.5

1

(c
)

0 20 40 60 80

−2

0

2

(d
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n
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0
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)

n
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1

1.5
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)

n

Figure 38: Signals and sequences in Problem 15, (a)..(c) in top row, (d)..(f) in bottom row. It
can be seen that (at least) (c) is not periodic in the scene shown.
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16. Problem: There’s a sequence {5, 3,−1, 2,−5,−7}. Compute “a two-point moving aver-
age”.

Solution: The avaraged sequence is {(5 + 3)/2, (3− 1)/2, (−1 + 2)/2, (2− 5)/2, (−5−
7)/2} = {4, 1, 0.5, −1.5, −6}.
The input sequence is x[n] = {5, 3, −1, 2, −5, −7}, i.e., x[0] = 5, x[1] = 3, x[2] =
2, x[3] = −5, x[4] = −7. The averaging process can be thought as a filtering operation:

y[n] =
x[n] + x[n− 1]

2

This results to a LTI system with the impulse response

h[n] =
δ[n] + δ[n− 1]

2

and the frequency response

H(ω) =
1 + e−jω

2

which in DSP literature is normally written as H(ejω). The corresponding flow (block)
diagram is plotted in Figure 39.

Slow changes in the signal (temperature) mean low frequencies and quick changes mean
high frequencies. Averaging smoothens the signal. In DSP, we say that it is a lowpass
filter while it preserves low frequencies in the signal but attenuates high frequencies.
High-frequency variation is often considered as noise.

D

x[n] y[n]

0.5

Figure 39: Problem 16: Flow diagram of the filter.
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17. Problem: Express the input-output relations of the discrete-time systems in Figure 41.

Solution: In this problem there are several types of discrete-time systems. Notice that
the scope of this course is LTI systems (linear and time-invariant). LTI systems are very
easy to detect, they are relatively simple but very useful. In this course the system input
x[n] and output y[n] are 1-dimensional except some examples with pictures (2D). For
LTI-systems the input-output relation can be written with a difference equation or a set
of difference equations.

There are some basic operations on sequences (signals) in discrete-time systems (x refers
to input to the system / operation, y output) shown also in Figure 40:

• sum of signals (sequences) y[n] = x1[n] + x2[n]

• signal multiplication (by constant) y[n] = a x[n]

• delay or advance of signal y[n] = x[n± k]

• product of signals, modulator (non-LTI systems) y[n] = x1[n] · x2[n]

• branch / pick-off node y1[n] = x[n], y2[n] = x[n]

x[n]

x[n]

x[n−1]
D

z
x[n−1]−1

x[n]
a

ax[n]

x  [n]+x  [n]21

x  [n] . x  [n]21

x  [n]

x  [n]1

2 x  [n]

x  [n]1

2

x[n]

x[n]
x[n]

(a) (d)(b) (c) (e)

Figure 40: Problem 17: Basic operations in discrete-time systems, (a) sum of sequencies, (b)
amplification by constant, (c) unit delay (D, T , or z−1), and (d) product of signals, modulator
(non-LTI systems), and (e) branch / pick-off node.

D

D

y[n]x[n]

−2
x[n−1]

x[n−2]

(a)

z−1z−1

z−1

x[n]

−2 2

y[n]

x[n−1]

x[n−2]

y[n−1]

y[n]
y[n]

(b)

x[n] y[n]

cos(     n)ω

(c)

v[n]
+

+
c

x[n]

y[n]

a b

D

(d)

Figure 41: Problem 17: Discrete-time systems, also at page 9.
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a) Difference equation: y[n] = x[n] − 2x[n − 1] + x[n − 2]. LTI-filter, type FIR (see
Problem 18).

b) The memory registers / unit delays are often drawn either “D” (delay) or “z−1 (refers
to a delay in z-transform). Note that the output is fed back in the loop. The left
part of the filter is the same as (a). The sequence right after the second summing on
top line is y[n] which goes both to the output and down to feedback loop. Therefore
the terms coming into the last summing unit are x[n]− 2x[n− 1]+x[n− 2] from left
and 2y[n− 1] from the loop. The difference equation is

y[n] = 2y[n− 1] + x[n]− 2x[n− 1] + x[n− 2]

The system is LTI and type IIR (see Problem 18).

c) Input signal x[n] is multiplied by a sequence cos(ωn) (not a constant). This operation
is called modulation and is not LTI. The relation can be written as

y[n] = x[n] · cos(ωn)

d) This is so called lattice structure (Mitra 2Ed Sec. 6 / 3Ed Sec. 8 ). In order to get
relationship between x[n] and y[n] temporary variables are used after each summing
unit. In this case, there is one temporary variable v[n], and the set of difference
equations is

v[n] = x[n] + a v[n− 1]

y[n] = b v[n] + c v[n− 1]

The temporary variable v[n] can be simplified away, but it is easier to determine
the transfer function H(z) in frequency domain and then apply inverse z-transform,
which is discussed later. The system is LTI and IIR (see Problem 18).

Remark. The simplified difference equation for the system in (d) can be received by
eliminating all temporary v[n] sequences:

x[n] = v[n]− a v[n− 1] | x on left side

y[n] = b v[n] + c v[n− 1] | y on left side

−bx[n] = −b v[n] + ab v[n− 1] | y[n]− bx[n] cancels v[n]

−ay[n− 1] = −ab v[n− 1]− ac v[n− 2]

−cx[n − 1] = −c v[n− 1] + ac v[n− 2] | all v[n− 1], v[n− 2] cancelled

which finally gives y[n] = ay[n− 1] + bx[n] + cx[n− 1].

The discrete-time system does some computation for sequencies of numbers. Therefore it
is straightforward to write down a computer program, e.g. in (a),

x1 := 0; x2 := 0;

while TRUE {

x2 := x1;

x1 := x0;

x0 := read_next_input(input_stream);

y := x0 - 2*x1 + x2;

write_output(output_stream, y);

}

or if all samples are known and in a vector,

for (k = 2; k <= length(x); k++) {

y[k] := x[k] - 2*x[k-1] + x[k-2];

}
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18. Problem: Look at the flow (block) diagrams in Figure 42.

x[n] y[n]

-0.75

0.5

z-1

z-1

i

0.5 -0.75

y[n]x[n]

-1z -1z

ii

0.5

x[n]

0.5

0.75

-0.75

y[n]

z-1

z-1

iii

1

y[n]1/2x[n]

iv

v[n]
+

+
c

x[n]

y[n]

a b

D

v

Figure 42: Flow diagrams of Problem 18, also at page 9.

a) What does LTI mean? How to prove or recognise LTI systems?

b) Which systems are linear and time-invariant (LTI)?

c) Which systems have feedback?

d) Which LTI systems are FIR and which are IIR?

Solution: In this problem we try to recognise LTI systems by their layout.

a) LTI = linear AND time-invariant (=shift-invariant) system. These two properties
belong to a system not to a signal. Other system properties can be, e.g. stability,
causality, or if it needs memory or if it can be inverted.

See Problem 19 for mathematical proofs.

Recognition of LTI systems from the flow (block) diagrams: there are only (1) sums
of signals, (2) multiplication by a contant, (3) delays or advances. The components
were introduced in Problem 17, see Figure 40 at page 46.

LTI systems can be represented with a linear constant coefficient difference (or dif-
ferential in case of analog system) equation

∑

k

dk y[n− k] =
∑

k

pk x[n− k]

where {dk} and {pk} are constants. Often in practice, we use causal finite-dimensional
LTI systems

∑N
k=0 dk y[n− k] =

∑M
k=0 pk x[n − k], where the order of the system is

given by max{N, M} (Mitra 2Ed Sec. 2.6.0 / 3Ed Sec. 2.7.0 ). If the system cannot
be written in the format above, it is not a (causal) LTI system.

b) LTI? Only summing, delays, amplifications by constants. (i) Yes, (ii) Yes, (iii) Yes,
(iv) No, adding a constant, (v) Yes.

c) Feedback means that some of the output (or internal) values are fed back in the
system. Computation can be said to be recursive or iterative. There are loops in (i),
(ii), (iii), and (v).

d) FIR = Finite (length) Impulse Response. IIR = Infinite (length) Impulse Response.

If the system has a feedback loop somewhere in the structure, it is also IIR at the
same time. The output value is computed using older output values, i.e. there is
recursion. This can be seen that there are also terms y[n−k], k 6= 0, in the difference
equation.

If there is no loop and computation flows forward all the time, then the system is
FIR. This can be seen that there is only the term y[n] in the left side of the difference
equation above.

FIR: (iv) has an impulse response of finite length but it is not LTI. IIR: (i), (ii), (iii),
and (v) have infinite (length) impulse response because of feedback loops.
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19. Problem: Determine if the system is (1) linear, (2) causal, (3) stable, and (4) shift-
invariant.

a) y[n] = x3[n],

b) y[n] = γ +
∑2

l=−2 x[n− l], γ is a nonzero constant,

c) y[n] = αx[−n], α is a nonzero constant.

Solution: Properties of the discrete-time system, see (Mitra 2Ed Sec. 2.4.1, 2.5.3, 2.5.4
/ 3Ed Sec. 2.4.2, 2.5.3., 2.5.4 ).

Linearity:
If y1[n] and y2[n] are the responses to the input sequences x1[n] and x2[n], respectively,
then for an input

x[n] = αx1[n] + βx2[n],

the response is given by
y[n] = αy1[n] + βy2[n].

x 1

x 2

x

b

*
3

S

a

b

y
3

a
1

y
2

y
3

yx 1

x 2

S

S

Figure 43: Linearity. If the linear combination of outputs of x1 and x2 is the same as the output
of the linear combination of inputs, then the system is linear.

Remark. When considering a constant-coefficient difference equation like y[n]+0.5y[n−
1] = x[n] + 0.5x[n− 1] the system is not linear, if the initial conditions are not zero, i.e.,
y[−1] 6= 0. When initial values are zero, the system is said to be in rest. See (Mitra 2Ed
Ex. 2.30, p. 92 / 3Ed Ex. 2.37, p. 92 ).

Causality:
The n0-th output sample y[n0] depends only on previous output values and input samples
x[n] for n ≤ n0, and does not depend on input samples for n > n0. In case of LTI-system,
the system is causal if and only if impulse response h[n] = 0 for all n < 0.

Stability:
Bounded input, bounded output (BIBO) stability: If a bounded input (Bx is a finite
constant)

|x[n]| < Bx <∞, ∀n
produces a bounded output (By is a finite constant)

|y[n]| < By <∞, ∀n

as a response then the system is BIBO stable (see (a) and (b) at Page 50 for details). In
case of LTI-system, the system is stable if and only if

∑∞
n=−∞ |h[n]| <∞.

Time/Shift-invariance:
If y1[n] is the response to an input x1[n], then the response to an input

x[n] = x1[n− n0]
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Figure 44: Time invariance. If the output of delayed input is the same as delayed output, then
the system is time-invariant.

is simply
y[n] = y1[n− n0],

where n0 is any positive or negative integer.

a) y[n] = x3[n].

Take inputs x1[n] and x2[n], the outputs are then y1[n] = x3
1[n] and y2[n] = x3

2[n].
Now the linear combination of the input signals is x3[n] = αx1[n] + βx2[n] and the
output is

y3[n] = (αx1[n] + βx2[n])3 6= αx3
1[n] + βx3

2[n] = αy1[n] + βy2[n].

Hence the system is not linear.

Since there is no output before the input hence the system is causal.

The system is stable: Assume |x[n]| < Bx, then

|y[n]| = |x3[n]| ≤ |x[n]|3 < B3
x = By <∞.

The system is time-invariant: Assume input x1[n] and output y1[n], then response
of input x[n] = x1[n− n0] is

y[n] = (x[n])3 = (x1[n− n0])
3 = y1[n− n0]

b) y[n] = γ +
∑2

l=−2 x[n− l], γ is a nonzero constant.

Use linear combination αx1[n] + βx2[n] as the input

y3[n] = γ +
2∑

l=−2

(αx1[n− l] + βx2[n− l])

= 0.5γ + α

2∑

l=−2

x1[n− l] + 0.5γ + β

2∑

l=−2

x2[n− l]

6= αγ + α

2∑

l=−2

x1[n− l] + βγ + β

2∑

l=−2

x2[n− l]

= αy1[n] + βy2[n],

where α and β are not fixed. The system is hence nonlinear.

The system is not causal, because there can be output before input, when l ∈
[−2,−1].

System is stable: Assume bounded input |x[n]| < Bx, then

|y[n]| = |γ +

2∑

l=−2

x[n− l]| ≤ |γ|+
2∑

l=−2

|x[n− l]| < |γ|+ 5Bx = By <∞
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The system is also time-invariant: Assume input x1[n] and output y1[n], then
response of input x[n] = x1[n− n0] is

y[n] = γ +

2∑

l=−2

x1[n− n0] = y1[n− n0].

c) y[n] = αx[−n], α is a nonzero constant.

The system is linear, stable and noncausal.

Assume inputs x1[n],x[n] and outputs y1[n], y[n] , respectively, then

y[n] = αx[−n],

y1[n] = αx1[−n].

Let x[n] = x1[n− n0], then

y[n] = αx[−n] = αx1[−n− n0]

6= αx1[n0 − n] = αx1[−(n− n0)] = y1[n− n0]

and the system is not time-invariant.
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20. Problem: A LTI system with an input x1[n] = {1, 1, 1} gives an output y1[n] =
{0, 2, 5, 5, 3}. If a new input is x2[n] = {1, 3, 3, 2}, what is the output y2[n]?

Solution: The system is both linear (L) and time-invariant (TI). Now x2[n] can be
thought as a sum of original x1[n] and a shifted and scaled 2x1[n− 1]:

x2[n] = x1[n] + 2x1[n− 1] = {1, 1, 1}+ {0, 2, 2, 2} = {1, 3, 3, 2}

Because of LTI, the output y2[n] is also a sum of original y1[n] and a shifted and scaled
2y1[n− 1], as shown in Figure 45

y2[n] = y1[n] + 2y1[n− 1] = {0, 2, 5, 5, 3}+ {0, 0, 4, 10, 10, 6} = {0, 2, 9, 15, 13, 6}
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]
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Figure 45: Problem 20: Left column: sequences x1[n], 2x1[n−1], and x2[n] = x1[n]+2x1[n−1].
Right column: sequences y1[n], 2y1[n− 1], and y2[n] = y1[n] + 2y1[n− 1]. This holds for linear
and time-invariant (LTI) systems.

Remark: A standard way to solve this problem is to compute deconvolution of x1[n] and
y1[n], and then apply the result to the new input x2[n]. See Problem 26.
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21. Problem:

a) What is the impulse response of the system in Figure 46(a)? What is the connection
to the difference equation? Is this LTI system stable/causal?

b) What are the first five values of impulse response of the system in Figure 46(b)?

c) What are the first five values of impulse response of the system in Figure 46(d)?

D

D

y[n]x[n]

−2
x[n−1]

x[n−2]

(a)

z−1z−1

z−1

x[n]

−2 2

y[n]

x[n−1]

x[n−2]

y[n−1]

y[n]
y[n]

(b)

v[n]
+

+
c

x[n]

y[n]

a b

D

(d)

Figure 46: Discrete-time systems for Problems 21 and 22.

Solution: Impulse response h[n] is the response of the system to the input δ[n]. LTI
discrete-time system is completely specified by its impulse response h[n] (Mitra 2Ed Sec.
2.5.1 / 3Ed Sec. 2.5.1 ). For a LTI system (see Problems 18 and 19) the stability condition
is
∑

n |h[n]| <∞ and the causability condition h[n] = 0, ∀n < 0.

If the impulse response h[n] is known for a LTI system, then the output y[n] can be
computed for any input x[n] by convolution.

Impulse δ[n] −→ Any discrete-time
system

−→ Impulse response
hi[n]

Input sequence x[n] −→ Discrete-time
LTI system h[n]

−→ Output sequence y[n]
y[n] = h[n] ⊛ x[n]

a) Difference equation of the system is y[n] = x[n]− 2x[n− 1]+ x[n− 2]. Let the input
be δ[n] and read what comes out.

n x[n] = δ[n] −2x[n− 1] x[n− 2] y[n] = x[n]− 2x[n− 1] + x[n− 2]
. . . 0 0 0 0
-1 0 0 0 0
0 1 0 0 1
1 0 -2 0 -2
2 0 0 1 1
3 0 0 0 0

. . . 0 0 0 0

The impulse response is

h[n] = δ[n]− 2δ[n− 1] + δ[n− 2]

The length L{.} of the impulse response is finite, L{h[n]} = 3 <∞. So, the filter is
FIR (finite impulse response).
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Notice that in case of FIR filter (no feedbacks, flow always going forward), the
impulse response can be easily gotten from the corresponding difference equation
just by replacing y by h and each x by δ (Mitra 2Ed Sec. 2.5.1 / 3Ed Sec. 2.5.1 ).

All FIR systems are always stable because the length of impulse response is finite,
and therefore also the sum of absolute values is finite:

∑
|h[n]| < ∞, in this case

∑
|h[n]| = 1 + 2 + 1 = 4 <∞.

This FIR system is causal while h[n] = 0 for all n < 0.

b) There is a feedback in the filter whose difference equation is

y[n] = 2y[n− 1] + x[n]− 2x[n− 1] + x[n− 2]

The impulse response can be expressed in a closed form from the transfer function
H(z) by inverse z-transform (discussed later). However, the impulse reponse is the
response for impulse, so just feed a delta function in and read what comes out. The
initial value y[−1] is by default zero.

n x[n] = δ[n] −2x[n− 1] x[n− 2] 2y[n− 1] y[n] = 2y[n− 1] + . . .
. . . 0 0 0 0 0
-1 0 0 0 0 0
0 1 0 0 0 1
1 0 -2 0 2 0
2 0 0 1 0 1
3 0 0 0 2 2
4 0 0 0 4 4

. . . 0 0 0 . . . . . .

The system is clearly causal but it seems not to be stable while the output is not
bounded. The stability of IIR systems have to be checked every time, and there will
be easy tools for that later (poles of H(z) outside the unit circle).

So, the first values of h[n] = {1, 0, 1, 2, 4, . . .} from which we can guess that the
closed form equation is h[n] = δ[n] + 2n−2µ[n− 2].

c) A set of difference equations can be written,

v[n] = x[n] + a v[n− 1]

y[n] = b v[n] + c v[n− 1]

Just like in (b), the columns for temporary values are computed, and finally the first
values of the impulse response are

h[n] = {b, ba + c, ba2 + ca, ba3 + ca2, ba4 + ca3, . . .}

from which it can be guessed that the closed form representation for the impulse
response is h[n] = banµ[n] + can−1µ[n− 1].
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22. Problem: Step response s[n] is the response of the system to the input µ[n]. What are
the step responses of systems in Figures 46(a) and (b), see Page 53.

Solution: Unit step response, or shortly step response s[n] is the response of the system
to the input µ[n] (Mitra 2Ed Sec. 2.4.2 / 3Ed Sec. 2.4.3 ). Step response can be computed
easily from the impulse response h[n] by cumulative sum (accumulator)

s[n] =
n∑

k=−∞

h[k]

Now, in (a) the impulse response is h[n] = δ[n]−2δ[n−1]+δ[n−2], and the step response
is

s[n] = {. . . , 0, 0, 1,−1, 0, 0, . . .}
which can be also seen by feeding ones to the input and reading the output. The steady-
state response (Mitra 2Ed Sec. 4.2.3 / 3Ed Sec. 3.8.5 ) converges quickly to zero.

In (b) the impulse response diverges h[n] = δ[n] + δ[n− 2] + 2δ[n− 3] + 4δ[n− 4] + . . .,
as well as the step response

s[n] = {. . . , 0, 0, 1, 1, 3, 7, . . .}
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23. Problem: Compute the convolution of two signals x1(t) and x2(t) in both cases (a) and
(b) in Figure 5, page 10.

Solution: Continuous-time linear convolution of two signals x1(t) and x2(t) is defined
by

y(t) = x1(t) ⊛ x2(t) =

∫ ∞

−∞

x1(τ) · x2(t− τ) dτ

You can see an example of graphical convolution in Java applet in URL http://www.jhu.

edu/~signals/convolve/index.html. Sketch the signals x1(t) and x2(t) of Figure 5 into
the boxes. The other signal is flipped around. When sliding the flipped signal to right
over the other signal, the integral of the product is computed. At certain point t0 the
integral gives the convolution output y(t0).

In (a) the result can be seen in Figure 47(a). In (b) the arrows are impulses δ(t) which
are signals having the area of unity and being infinitely narrow, i.e. the height in infinite.
Convolving a signal with an impulse δ(t) can be considered as copying the signal at each
place where impulse lies, see Figure 47(b).

0

y(t)

t42

1

2

3

0

y(t)

t42

1

2

3

Figure 47: Problem 23: convolution results y(t), left: (a), right: (b).

Remark. The continuous-time convolution contains the product of two signals and taking
integral of the product. In practise, the convolution can seldom be computed in closed
form. However, in (a) the signals are

x1(t) =

{

3, −1 ≤ t < 4

0, elsewhere

x2(t) =

{

2− 2t, 0 ≤ t < 1

0, elsewhere

The flipped signal is x2(t − τ) = 2 − 2t + 2τ , and the convolution integral is y(t) =
∫

τ
x1(τ) · x2(t − τ) dτ . The convolution can be computed in five cases when sliding x2

from left to right: (1) t < −1, product of signals is zero, (2) −1 < t < 0, x2 “penetrating”,
(3) 0 < t < 4, “stable” case, (4) 4 < t < 5, x2 “leaving”, (5) t > 5, again zero.

y(t)(1) =

∫ −1

−∞

0 · (2− 2t + 2τ) dτ = 0, t < −1

y(t)(2) =

∫ t

−1

3 · (2− 2t + 2τ) dτ = 3− 3t2, −1 ≤ t < 0

y(t)(3) =

∫ t

t−1

3 · (2− 2t + 2τ) dτ = 3, 0 ≤ t < 4

y(t)(4) =

∫ 4

t−1

3 · (2− 2t + 2τ) dτ = 3t2 − 30t + 75, 4 ≤ t < 5

y(t)(5) =

∫ ∞

5

0 · (2− 2t + 2τ) dτ = 0, t ≥ 5
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24. Problem:

a) Compute x[n] ⊛ h[n], when
x[n] = δ[n] + δ[n− 1], and h[n] = δ[n] + δ[n− 1]. What is the length?

b) Compute x1[n] ⊛ x2[n], when
x1[n] = δ[n] + 5δ[n− 1], and x2[n] = −δ[n− 1] + 2δ[n− 2]− δ[n− 3]− 5δ[n− 4].
What is the length? Where does the sequence start?

c) Compute h[n] ⊛ x[n], when
h[n] = 0.5nµ[n], and x[n] = δ[n] + 2δ[n− 1]− δ[n− 2]. What is the length?

Solution: Discrete-time linear convolution of two sequences h[n] and x[n] is

y[n] = h[n] ⊛ x[n] =
∞∑

k=−∞

h[k]x[n − k]

The convolution is an operation for two sequences (Mitra 2Ed Sec. 2.5.1, p. 71 / 3Ed
Sec. 2.5.1, 2.5.2, p. 78 ). There are several ways to get the convolution result. First,
in (a) the convolution is considered as filtering, the other sequence is the input and the
other is the inpulse response of the system, and the convolution result is the output of
the system. Second, in (b) a graphical way of inverting and sliding the sequences over
each other is represented. In (c) the convolution is considered as a sum of shifted and
scaled sequences, “tabular method” in (Mitra 3Ed Sec. 2.5.2 ). However, even if three
ways are introduced separately, they all rely on the same (and simple) definition of the
convolution.

When computing discrete-time convolution y[n] = x[n] ⊛ h[n], it is nice know a couple of
rules. Let L{.} be a length of a sequence, e.g. x[n] = {3, 2, 0, 5,−2}, then L{x[n]} = 5.

Because LTI-system is shift-invariant, the starting point of the convolution result can be
determined as a sum of starting points of the convolved sequencies. Let A{.} be an index
number of the first non-zero element, e.g. esim. A{x[n]} = −1.

It is easily seen that for the convolution result y[n] it holds

L{y[n]} = L{x[n]} + L{h[n]} − 1

A{y[n]} = A{x[n]} + A{h[n]}

There are also some nice convolution demos in Internet, e.g. http://www.jhu.edu/

~signals/discreteconv2/index.html.

a) Consider convolution as filtering with the input sequence x[n] = δ[n] + δ[n − 1] =
{1, 1}, and the impulse response h[n] = δ[n] + δ[n − 1] = {1, 1}, of the system.
The corresponding difference equation is y[n] = x[n] + x[n − 1], that is, the output
is just the sum of the present and previous value in the input. (You can draw the
flow (block) diagram for the system and verify the computation.)

n x[n] = δ[n] + δ[n− 1] x[n− 1] y[n] = x[n] + x[n− 1]
-1 0 0 0 + 0 = 0
0 1 0 1 + 0 = 1
1 1 1 1 + 1 = 2
2 0 1 0 + 1 = 1
3 0 0 0 + 0 = 0
4 0 0 0 + 0 = 0

So, the result is x[n]⊛h[n] = {1, 2, 1} = δ[n]+2δ[n−1]+δ[n−2], and the length is
L{y[n]} = 3. The starting point can be checked: A{y[n]} = A{x[n]}+ A{h[n]} = 0.
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b) Another way (on-line) is computing output values at each time moment n. Graphi-
cally this means inverting (flipping around) the other sequence, sliding it over the
other, and computing the output value as a dot sum. This is also illustrated with
figures in (Mitra 2Ed Ex. 2.24, p. 73-75 / 3Ed Ex. 2.26, p. 80-83 ).

Now when x1[n] = δ[n]+5δ[n−1] and x2[n] = −δ[n−1]+2δ[n−2]−δ[n−3]−5δ[n−4],
then L{x[n]} = 2 + 4− 1 = 5 and A{x[n]} = 0 + 1 = 1. Therefore we know that the
convolution result is of form x[n] = a1δ[n − 1] + a2δ[n − 2] + a3δ[n − 3] + a4δ[n −
4] + a5δ[n− 5].

n = 1 : x[1] =

∞∑

k=−∞

x1[k]x2[1− k]

= 0 + (x1[0]
︸︷︷︸

1

· x2[1− 0]
︸ ︷︷ ︸

−1

) + (x1[1]
︸︷︷︸

5

· x2[1− 1]
︸ ︷︷ ︸

0

) + 0

= −1

n = 2 : x[2] =

∞∑

k=−∞

x1[k]x2[2− k]

= 0 + (x1[0] · x2[2− 0]) + (x1[1] · x2[2− 1]) + 0

= 2 + (−5) = −3

n = 3 : x[3] =

∞∑

k=−∞

x1[k]x2[3− k]

= 0 + (x1[0] · x2[3− 0]) + (x1[1] · x2[3− 1]) + 0

= −1 + 10 = 9

n = 4 : x[4] = −5 + (−5) = −10

n = 5 : x[5] = −25

The procedure is represented stepwise, and step n = 3 is shown also in Figure 48.
In the top line of the figure there is the sequence x1[k] = {. . . , 0, 1, 5, 0, . . .}, in the
second line the shifted and inverted sequence x2[n − k]. It slides from left to right
when n increases, and at n = 3 it is x2[3 − k] = {. . . , 0,−5,−1, 2,−1, 0, . . .}. The
point-wise product of sequences in top rows is shown in the third line:
{x1[k]x2[3− k]} = {. . . , 0, 0 · (−5), 1 · (−1), 5 · 2, 0 · (−1), 0, . . .} = {−1, 10}.
The convolved value x[3] is the sum of values in the third row:
x[3] =

∑∞
k=−∞ x1[k]x2[3− k] = −1 + 10 = 9.

In the bottom line there is the result for n ≤ 3, and n = 3 underlined, and results
for n > 3 are to be computed.

c) The convolution can be computed as a sum of shifted and scaled sequences.
Now, h[n] = 0.5nµ[n], and x[n] = δ[n] + 2δ[n− 1]− δ[n− 2], in other words x[0] = 1,
x[1] = 2, x[2] = −1, and x[n] = 0, elsewhere. The division into three parts on
third line emphasizes the fact that a scalar x[k] is zero with all values of k except
k = {0, 1, 2}.
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Figure 48: Problem 24(b): Linear convolution using “invert and slide”. Caption from the step
n = 3, i.e. computing the value x[3] = 9. See the text for more details. There is a demo Matlab
program linconv.m to demonstrate the computation in the course web pages.

y[n] = x[n] ⊛ h[n]

=
∞∑

k=−∞

x[k]h[n− k]

=
−1∑

k=−∞

x[k]h[n− k] +
2∑

k=0

x[k]h[n − k] +
∞∑

k=3

x[k]h[n − k]

= 0 +

2∑

k=0

x[k]h[n− k] + 0

= x[0]
︸︷︷︸

scaling

· h[n− 0]
︸ ︷︷ ︸

shifted seq.

+x[1]h[n− 1] + x[2]h[n− 2]

= 1 · h[n] + 2 · h[n− 1]− 1 · h[n− 2]

= 0.5nµ[n] + 2 · 0.5n−1µ[n− 1]− 0.5n−2µ[n− 2]

= δ[n] + 2.5δ[n− 1] + 0.5nµ[n− 2] | alternative

It can be seen that values of x[n] were scaling factors and sequence h[n] was shifted
each time. While convolution is commutative (x1[n]⊛x2[n] = x2[n]⊛x1[n]), one can
compute the same using values of h[n] as scaling factors and shifting x[n]. The pro-
cedure is depicted in Figure 49. While the length of the other sequence is infinitive,
so is also the length of the convolution.

T-61.3010 DSP 2007 (B+C) 60/152 SOLUTIONS

−2 0 2 4 6
−1

0
1
2

x[
0]

 ⋅ 
h[

n−
0]

y[n] = x[n] * h[n], method "scale&shift"

1 0.5 0.25
0.125

0.0625
0.03125

−2 0 2 4 6
−1

0
1
2

x[
1]

 ⋅ 
h[

n−
1]

0 2 1 0.5 * * * *

−2 0 2 4 6
−1

0
1
2

x[
2]

 ⋅ 
h[

n−
2]

0 0 −1 −0.5 * * * *

−2 0 2 4 6
−1

0
1
2

x[
n]

 *
 h

[n
]

1 2 0.25 0.125 * * * *

Figure 49: Problem 24(c): Linear convolution using “scaled and shifted sequences”. Top line:
x[0] · h[n − 0] = 0.5nµ[n], second: x[1] · h[n − 1] = 2 · 0.5n−1µ[n − 1], third: x[2] · h[n − 2] =
−1 · 0.5n−2µ[n− 2], bottom: convolution result, sum of sequences above.

25. Problem: Consider a LTI-system with impulse response h[n] = δ[n− 1]− δ[n − 2] and
input sequence x[n] = 2δ[n] + 3δ[n− 2].

a) What is the length of convolution of h[n] and x[n] (without computing convolution
itself)? Which index n is the first one having a non-zero item?

b) Compute convolution y[n] = h[n] ⊛ x[n]

c) Consider polynomials S(x) = 2 + 3x2 and T (x) = x − x2. Compute the product
U(x) = S(x) · T (x)

d) Check the result by computing the polynomial division T (x) = U(x)/S(x).

Solution: An important rule of thumb for finding length L{.} of the linear convolution
(different from circular convolution):

y[n] = h[n] ⊛ x[n] → L{y[n]} = L{h[n]} + L{x[n]} − 1

The first non-zero item A{.} for finite sequences:

y[n] = h[n] ⊛ x[n] → A{y[n]} = A{h[n]}+ A{x[n]}

In this case, h[n] = δ[n− 1]− δ[n− 2], which is drawn as a flow diagram in Figure 50.

a) L{h[n]} = 2, L{x[n]} = 3 → L{y[n]} = 4. Because h[n] is delayed by one
(dh = +1) and x[n] starts from the origo (dx = 0), also their convolution is delayed
by one: A{h[n]} = 1, A{x[n]} = 0 → A{y[n]} = 1.

Now we know that the result is of form:

y[n] = a1δ[n− 1] + a2δ[n− 2] + a3δ[n− 3] + a4δ[n− 4]
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1

−1

D

D

x[n]

Figure 50: Problem 25: Flow diagram.

b) Using values of h[n] = δ[n− 1]− δ[n− 2] as scaling factors

y[n] = h[n] ⊛ x[n]

=
∞∑

k=−∞

h[k]x[n − k]

=
2∑

k=1

h[k]x[n − k]

= 1 · (2δ[n− 1] + 3δ[n− 3])− 1 · (2δ[n− 2] + 3δ[n− 4])

= 2δ[n− 1]− 2δ[n− 2] + 3δ[n− 3]− 3δ[n− 4]

c) U(x) = S(x) · T (x) = (2 + 3x2) · (x − x2) = 2x − 2x2 + 3x3 − 3x4. Notice the
correspondence with the result of (b), the delay is the power of x (z−1 in Z-transform).

d) Using long division (Mitra 2Ed Ex. 3.35 / 3Ed Ex. 6.19 ). The polynomials are
U(x) = 2x− 2x2 + 3x3 − 3x4 and S(x) = 2 + 3x2,

− x2 + x

3x2 + 2
)
− 3x4 + 3x3 − 2x2 + 2x

3x4 + 2x2

3x3 + 2x
− 3x3 − 2x

0

We get the result x− x2 as expected (h[n] = δ[n− 1]− δ[n− 2]). Convolution and
deconvolution operations can be computed using products and divisions of polyno-
mials.
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26. Problem: The impulse response h1[n] of a LTI system is known to be h1[n] = µ[n] −
µ[n− 2]. It is connected in cascade (series) with another LTI system h2 as in Figure 6 at
page 11:

h1[n]→ h2[n]→ h1[n]

Compute the impulse response h2[n], when it is known that the impulse response h[n] of
the whole system is h[n] = {1, 5, 9, 7, 2} (Table 2 on page 11).

Solution: There are three subsystems connected in cascade (series). They are all linear
and time-invariant (LTI). The overall impulse response of the whole system is therefore

h[n] = (h1[n] ⊛ h2[n]) ⊛ h1[n]

h[n] = (h1[n] ⊛ h1[n]) ⊛ h2[n]

= δ[n] + 5δ[n− 1] + 9δ[n− 2] + 7δ[n− 3] + 2δ[n− 4]

Notice that h[n] and h1[n] are known but h2[n] is unknown. If one of the signals to
be convolved is unknown and the convolution result is known, the operation to find the
unknown is called deconvolution, inverse operation of convolution. The procedure of
deconvolution is basically the same as that with convolution. If polynomial products are
used, then the operation is polynomial division H2(x) = H(x)/(H1(x)H1(x)).

First, compute h11[n] = h1[n] ⊛ h1[n], with h1[n] = δ[n] + δ[n− 1],

h11[n] = h1[n] ⊛ h1[n]

= δ[n] + 2δ[n− 1] + δ[n− 2]

Second, compute the length (here L{.}) of h2[n]. While L{h[n]} = 5, L{h11[n]} = 3, and
L{h[n]} = L{h11[n]}+ L{h2[n]} − 1, the result is L{h2[n]} = 3.

The index of the first non-zero element (here A{.}) is A{h2[n]} = A{h[n]}−A{h11[n]} =
0− 0 = 0. Therefore the unknown sequence can be written as h2[n] = aδ[n] + bδ[n− 1] +
cδ[n− 2].

Third, compute the convolution, and solve the the unknown constants a, b, c.

h[n] = h11[n] ⊛ h2[n]

=
+∞∑

k=−∞

h11[k]h2[n− k] =
2∑

k=0

h11[k]h2[n− k]

= h2[n− 0] + 2h2[n− 1] + h2[n− 2]

= (aδ[n] + bδ[n− 1] + cδ[n− 2])

+2(aδ[n− 1] + bδ[n− 2] + cδ[n− 3])

+(aδ[n− 2] + bδ[n− 3] + cδ[n− 4])

= aδ[n] + (b + 2a)δ[n− 1] + (c + 2b + a)δ[n− 2] + (2c + b)δ[n− 3] + cδ[n− 4]

= δ[n] + 5δ[n− 1] + 9δ[n− 2] + 7δ[n− 3] + 2δ[n− 4] | h[n] is known

The comparison between the last two lines from left gives a = 1, then (b + 2 · 1) = 5 ⇒
b = 3, then (c + 2 · 3 + 1) = 9 ⇒ c = 2, and also the rest values hold. In the end, the
result is

h2[n] = δ[n] + 3δ[n− 1] + 2δ[n− 2]

which can be ensured by convolution.
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27. Problem: Determine the expression for the impulse response of each of the LTI systems
shown in Figure 51.

h1[n]
y[n]x[n] v[n]

h5[n]

h2[n]

h4[n]h3[n]

(a)

h1[n]
y[n]

x[n]

v[n]

h5[n]

h3[n]h2[n]

h4[n]

(b)

Figure 51: LTI systems with variables x[n], v[n], y[n] in Problem 27.

Solution: All subsystems are LTI. Therefore we can use sum of impulse responses for
parallel systems and convolution of impulse responses for cascade systems (Mitra 2Ed Ex.
2.27 / 3Ed Ex. 2.35 ).

If any temporary variables are needed, they are probably best situated right after the
summing units.

a) We can derive the impulse response h[n] of the whole system directly, or using a
temporary variable v[n] (easier!?) shown in Figure 51. The useful position for v[n]
is after summation.

v[n] = (h1[n] ⊛ x[n]) + ((h3[n] ⊛ h5[n]) ⊛ x[n])

y[n] = (h2[n] ⊛ v[n]) + ((h3[n] ⊛ h4[n]) ⊛ x[n])

=
(
(h2[n] ⊛ h1[n]) + (h2[n] ⊛ h3[n] ⊛ h5[n]) + (h3[n] ⊛ h4[n])

)
⊛ x[n]

h[n] = (h2[n] ⊛ h1[n]) + (h2[n] ⊛ h3[n] ⊛ h5[n]) + (h3[n] ⊛ h4[n])

b) In the same way as in (a).

v[n] = (h4[n] ⊛ x[n]) + ((h1[n] ⊛ h2[n]) ⊛ x[n])

y[n] = (h3[n] ⊛ v[n]) + ((h1[n] ⊛ h5[n]) ⊛ x[n])

=
(
(h3[n] ⊛ h4[n]) + (h1[n] ⊛ h2[n] ⊛ h3[n]) + (h1[n] ⊛ h5[n])

)
⊛ x[n]

h[n] = (h3[n] ⊛ h4[n]) + (h1[n] ⊛ h2[n] ⊛ h3[n]) + (h1[n] ⊛ h5[n])
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28. Problem: The impulse response of a digital matched filter, h[n], is the time-reversed
replica of the signal to be detected. The time-shift is needed in order to get a causal
filter.

The (binary) signal to be detected is given by s[n] = {1, 1, 1,−1,−1, 1,−1}. Consider an
input sequence x[n] which is a periodic sequence repeating s[n]. Determine h[n] and the
result of filtering y[n] = h[n] ⊛ x[n].

Solution: Matched filter. Let s[n] be a (binary) 7-bit long codeword to be detected,
x[n] an input signal of repeated s[n], and the impulse response of the matched filter
h[n] = s[−n]:

s[n] = {1, 1, 1,−1,−1, 1,−1}
x[n] = {. . . , s[n], s[n], s[n], . . .} =

= {. . . , 1, 1, 1,−1,−1, 1,−1, 1, 1, 1,−1,−1, 1,−1, 1, 1, 1,−1,−1, 1,−1, . . .}
h[n] = s[−n] = {−1, 1,−1,−1, 1, 1, 1}

The convolution result y[n] = h[n] ⊛ x[n] is shown in Figure 52.

0 5 10 15 20 25
−2

0

2

4

6

8
Problem 4. Output of the matched filter with input to be detected.

Figure 52: Convolution result of the matched filter and desired sequence in Problem 28.

The signal s[n] was chosen so, that the every seventh sample (length of s[n]) in output is
high, and all others are low. If the signal s[n] were different, there would be not so clear
peaks in the convolution result.

Remark. Convolution and cross-correlation have a close connection (Mitra 2Ed Eq.
2.106, p. 89 / 3Ed Eq. 2.127, p. 101 )

rxy[l] =

∞∑

n=−∞

y[n]x[−(l − n)] = y[l] ⊛ x[−l]
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29. Problem: Determine the autocorrelation sequence of the sequence

x1[n] = αnµ[n], |α| < 1

and show that it is an even sequence. What is the location of the maximum value of the
autocorrelation sequence?

Solution: Cross-correlation sequence rxy[l] of two sequences and autocorrelation se-
quence rxx[l] with lag l = 0,±1,±2, . . . are defined (Mitra 2Ed Sec. 2.7 / 3Ed Sec.
2.9 )

rxy[l] =

∞∑

n=−∞

x[n]y[n− l] rxx[l] =

∞∑

n=−∞

x[n]x[n − l]

rxx[l] =

∞∑

n=−∞

x1[n]x1[n− l]

=

∞∑

n=−∞

αnµ[n]αn−lµ[n− l]

=
∞∑

n=0

α2n−lµ[n− l]

=

{∑∞
n=0 α2n−l = α−l

1−α2 , for l < 0
∑∞

n=l α
2n−l = α−l

1−α2 − α−l−αl

1−α2 = αl

1−α2 , for l ≥ 0

Note for the lag l ≥ 0, rxx[l] = αl

1−α2 , and for l < 0, rxx[l] = α−l

1−α2 .

Replacing l with −l in the second expression we get rxx[−l] = α−(−l)

1−α2 = rxx[l].

Hence, rxx[l] is an even function of l.

Maximum value of rxx[l] occurs at l = 0 since αl is a decaying function for increasing l
when |α| < 1.
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Problem 3. Autocorrelation of x[n] = αn µ[n], α = 0.8
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Figure 53: Autocorrelation sequence in Problem 29. Top: x[n], middle: x[n − 2], bottom:
rxx[l], rxx[2] =

∑

k x[k]x[k − 2].
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30. Problem: Compute continuous-time Fourier transform (CTFT) of the following analog
signals: (a) x1(t) = e−3tµ(t), (b) x2(t) = e−j3t, (c) x3(t) = e−j3t + ej3t.

Solution: The continuous-time Fourier transform (CTFT) of a continuous-time signal
xa(t) is given by (Mitra 2Ed Eq. -, p. - / 3Ed Eq. 3.1, p. 118 ) below. The variable is
the angular frequency Ω = 2πf ∈ R, in range −∞ < Ω <∞.

Xa(jΩ) =

∫ ∞

−∞

xa(t) e−jΩt dt

a) Now x1(t) = e−3tµ(t) ∈ R, see Figure 54(a). Note that the unit step function µ(t)
sets the low border of intergration to zero. See also (Mitra 2Ed Ex. -, p. - / 3Ed
Ex. 3.1, p. 118 ).

X1(jΩ) =

∫ ∞

−∞

x1(t) e−jΩt dt =

∫ ∞

0

e−3t e−jΩt dt =

∫ ∞

0

e−(3+jΩ)t dt

= − 1

3 + jΩ

∞/

0

e−(3+jΩ)t = − 1

3 + jΩ
·
(

0− 1
)

=
1

3 + jΩ

b) Now x2(t) = e−j3t ∈ C. The signal is complex-valued and runs clock-wise around
unit circle with angular frequency Ω = −3 (rad/s), see Figure 54(b).

X2(jΩ) =

∫ ∞

−∞

x2(t) e−jΩt dt =

∫ ∞

−∞

e−j3t e−jΩt dt =

∫ ∞

−∞

e−j(3+Ω)t dt

= 2πδ(Ω + 3)

There is a peak of height 2π at Ω = −3, because
∫

δ(t)a(t)dt = a(t)|t=0. The signal
is complex and therefore the spectrum is not symmetric around y-axis.

c) Now x3(t) = e−j3t + ej3t = 2 cos(3t) ∈ R using Euler’s formula. There are two peaks
of height 2π at frequencies Ω = ±3.

X3(jΩ) = 2π
(

δ(Ω− 3) + δ(Ω + 3)
)
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Figure 54: Problem 30: Top row (a), (b), (c): signals x1(t), x2(t), and x3(t), time t in x-
axis. Bottom row (d), (e), (f): corresponding CTFTs, amplitude spectra |X1(jΩ)|, |X2(jΩ)|,
|X3(jΩ)|, angular frequency Ω in x-axis. In case of real signals x(t) ∈ R the spectrum is
symmetric around y-axis.
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31. Problem: Sketch the following signals in time-domain and their (amplitude) spectra in
frequency-domain.

a) x1(t) = cos(2π 500 t)

b) x2(t) = 4 cos(2π 200 t) + 2 sin(2π 300 t)

c) x3(t) = e−j(2π 250t) + ej(2π 250t)

d) x4(t) = x1(t) + x2(t) + x3(t)

Solution: Continuous-time Fourier transform (CFT or CTFT) decomposes the signal to
its frequency components. Cosine and exponential function have a close relationship via
Euler’s formula:

cos(Ωt) = 0.5 · (ejΩt + e−jΩt)

Ideally, each real cosine component xi(t) = Ai cos(2πfit + θi) is a peak at frequency fi

in an one-side spectrum or a peak pair at frequencies −fi and fi in a two-side spectrum.
So, if the signal x(t) (x[n]) is real-valued, then the two-side spectrum |X(jΩ)| (|X(ejω)|)
is symmetric.

The amplitude Ai expresses how strong the cosine component is.

a) A pure cosine at 500 Hz. Figure 55(a).

b) A sum of two cosines. Peaks at 200 and 300 Hz. Figure 55(b).

c) Two complex exponentials with the same amplitude and opposite frequencies can be
combined to a cosine using Euler’s formula. A peak at 250 Hz. Figure 55(c).

d) The sum signal contains all components in time domain as well as in frequency
domain. Figure 55(d).
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Figure 55: Signals and their one-side spectra (CFT) in Problem 31.

Remark. Typically, when computing spectra numerically (x[n] instead of x(t)) with
computer, the peaks “spread”. There is the discrete Fourier transform (DFT) of signal
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x4[n]← x4(t) in Figure 56, DFT using N=40 points in (a), and DFT using N=41 points
in (b), and both having the sampling frequency fs = 2000 Hz. So, in (a) the resolution
f0 of the frequency is exactly 50 Hz, whereas in (b) it is 2000 Hz /41 = 48.78 Hz. The
components of the signal are multiples of 50 Hz (4 · 50 = 200, etc.) but not multiples
of 48.78 Hz. In practice, the former case is very rare – normally all possible peaks are
spread. This example was executed using the command fft in Matlab.

When analyzing spectra in any commercial software, the sequence is first “cut” with a
window (Hamming, Hanning, Blackman, etc.). Windows and their effect on spectra are
discussed later in FIR filter design.
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Figure 56: Discrete Fourier Transform (DFT) of the same signal (now discrete-time x4[n]) as
in Figure 55(d): (a) signal components (200, 250, 300, 500 Hz) are multiples of the frequency
resolution f0 = 2000 Hz /40, (b) signal components are not any more multiples of f0 = 2000
Hz /41. Actually there are only four frequency components in the signal, but this cannot be
observed in (b). Fourier component X4[4] is highlighted in both figures. In (a) its frequency is
4f0 = 200 Hz, while in (b) it is 4f0 ≈ 195 Hz. Dashed line is the result of discrete-time Fourier
transform (DTFT) where the frequency is continuous-valued. Example in Problem 31.
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32. Problem: Compute discrete-time Fourier transform (DTFT) for each of the following
sequences using the definition: (a) x1[n] = δ[n − 2], (b) x2[n] = 0.5nµ[n], (c) x3[n] =
a[n] · cos(π

5
n).

Solution: Discrete-time Fourier transform (DTFT) of sequence x[n] is defined

X(ejω) =
∞∑

n=−∞

x[n]e−jωn

a) x1[n] = δ[n− 2]

X1(e
jω) =

∞∑

n=−∞

x1[n]e−jωn =
∞∑

n=−∞

δ[n− 2]e−jωn

= e−j2ω

b) x2[n] = 0.5nµ[n]

X2(e
jω) =

∞∑

n=−∞

x2[n]e−jωn =

∞∑

n=−∞

0.5nµ[n]e−jωn

=

∞∑

n=0

(0.5 · e−jω)n

=
1

1− 0.5 · e−jω

c) x3[n] = a[n] cos(π
5
n)

X3(e
jω) =

∞∑

n=−∞

x3[n]e−jωn =
∞∑

n=−∞

a[n] cos(
π

5
n)e−jωn

= 0.5
∞∑

n=−∞

a[n]
(
ej π

5
n + e−j π

5
n
)
e−jωn

= 0.5

∞∑

n=−∞

a[n]
(
e−j(ω−π

5
)n + e−j(ω+ π

5
)n
)

= 0.5
(
A(ej(ω−π

5
)) + A(ej(ω+ π

5
))
)

where A(ejω) is DTFT of a[n]. Signal a[n] is modulated with ω = π/5. In the fre-
quency domain the spectrum A(ejω) is “copied” (and scaled) at negative and positive
angular frequency ω = π/5.
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33. Problem: Consult the transform table and find the DTFTs of sequences (a) x3[n] =
a[n] · cos(0.2πn), (b) x4[n] = {2, 2, 3, 3, 3, 1, 1}.

Solution: Consult any transform table of discrete-time Fourier-transform. There are a
set of transform pairs and some properties listed.

a) In case of modulation (product in time domain) there are two lines

x1[n] · x2[n] ↔ 1

2π
X1(e

jω) ⊛ X2(e
jω)

cos(ω0n) ↔ π
∑

l

(δ(ω − ω0 + 2πl) + δ(ω + ω0 + 2πl))

Now an unknown sequence a[n] (DTFT A(ejω)) is modulated with a cosine sequence
with ω0 = 0.2π. Transform of the cosine is

cos(πn/5)↔ π
∑

l

(δ(ω − π/5 + 2πl) + δ(ω + π/5 + 2πl))

which is an impulse train. Convolving a spectrum A(ejω) with that train over one
period, and multiplying with 1

2π
we get

X3(e
jω) = 0.5

(
A(ej(ω−π

5
)) + A(ej(ω+ π

5
))
)

b) The sequence x4[n] can be converted directly with the pair δ[n − k] ↔ e−jkω and
keeping mind that transform is linear c · δ[n− k]↔ c · e−jkω. In this way X4(e

jω) =
2ejω + 2 + . . . + e−j5ω.

However, if we can see that x4[n] can be constructed as a sum from two “boxes”
x4[n] = x41[n] + x42[n]

x41[n] = 2, −1 ≤ n < 4, and, x42[n] = 1, 1 ≤ n < 6

we can utilize the time shifting property and a transform of a rectangular

x[n− k] ↔ e−jkωX(ejω)

x[n] =

{

1, |n| ≤ N1

0, |n| > N1

↔ sin(ω(N1 + 0.5))

sin(ω/2)

Here, x41[n] = 2x[n + 1] with N1 = 2, and x42[n] = x[n− 3] with N1 = 2. Hence,

X4(e
jω) = 2ejωX(ejω) + e−3jωX(ejω) =

(
2ejω + e−3jω

)(sin(2.5ω)

sin(0.5ω)

)

where sin(2.5ω)/ sin(0.5ω)→ 5, when ω → 0 using l’Hospital’s rule.

Rule: If limx→a
f(x)
g(x)

= 0
0
, then limx→a

f(x)
g(x)

= limx→a
f ′(x)
g′(x)

.

Now limω→0
sin(2.5ω)
sin(0.5ω)

= limω→0
2.5 cos(2.5ω)
0.5 cos(0.5ω)

= 5.
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34. Problem: Suppose that a real sequence x[n] and its discrete-time Fourier transform
(DTFT) X(ejω) are known. The sampling frequency is fs. At angular frequency ωc = π/4:
X(ej(π/4)) = 3 + 4j. Determine

a) |X(ej(π/4))| b) ∠X(ej(π/4))

c) X(ej(−π/4)) d) X(ej(π/4+2π))

e) If fs = 4000 Hz, what is fc

Solution: Discrete-time Fourier transform (DTFT) is always 2π-periodic:

X(ej(ω+2π)) =
∞∑

n=−∞

x[n] e−j(ω+2π)n =
∞∑

n=−∞

x[n] e−jωn e−j2π n
︸ ︷︷ ︸

=1

= X(ejω)

Complex-valued DTFT can be considered in polar coordinates

X(ejω) = |X(ejω)| · ej∠X(ejω)

z = r · ejθ

where |X(ejω)| is (amplitude) spectrum and ∠X(ejω) phase spectrum.

The value of DTFT was given at ωc = π/4 : X(ej(π/4)) = 3 + 4j.

a) |X(ej(π/4))| = 5

b) ∠X(ej(π/4)) = arctan(4/3) ≈ 0.927

c) X(ej(−π/4)) = 3− 4j

d) X(ej(π/4+2π)) = 3 + 4j

e) Angular sampling frequency is ωs = 2π. The interesting frequency can be obtained
from the ratio (ωc/ωs) = (fc/fs). If the sampling frequency fs = 4000 Hz, then

fc =
4000 Hz · (π/4)

2π
= 500 Hz.
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35. Problem: The magnitude response function |X(ejω)| of a discrete-time sequence x[n] is
shown in Figure 57 in normalized angular frequency axis. Sketch the magnitude response
for the range −π ≤ ω < π. Is the signal x[n] real or complex valued?

7.5π 9.5π8.5π

Figure 57: |X(ejω)| of Problem 35.

Solution: Discrete-time Fourier transform (DTFT) is always 2π-periodic:

X(ej(ω+2πk)) =

∞∑

n=−∞

x[n] e−j(ω+2πk)n =

∞∑

n=−∞

x[n] e−jωn e−j2π kn
︸ ︷︷ ︸

=1

= X(ejω)

The spectrum in range (7.5π . . . 9.5π] can be repeated. Borders correspond 7.5π−(2·4)π =
−0.5π and 9.5π − (2 · 4)π = 1.5π. When origo taken as a central point, it can be seen
that the spectrum is symmetric around y-axis. See Figure 58.

6 7 8 9 10π π π π π7.5π 9.5π
0πππ−2 − π π2

Figure 58: Problem 35: Discrete-time spectrum is periodic with 2π. The bottom label line is
shifted by 8π. The two-sided spectrum in range (−π . . . π] in a dashed rectangular.

In case of a real valued sequence x[n] the following symmetry relations hold (Mitra 2Ed
Sec. 3.1.4, p. 127 / 3Ed Sec. 3.2.3, p. 128 ):

X(ejω) = X∗(e−jω)

Xre(e
jω) = Xre(e

−jω)

Xim(ejω) = −Xim(e−jω)

|X(ejω)| = |X(e−jω)|
∠X(ejω) = −∠X(e−jω)

Equivalently, because now our magnitude spectrum is symmetric (|X(ejω)| = |X(e−jω)|),
then x[n] ∈ R. For real sequences x[n] it is normal to draw the spectrum only in range
ω ∈ [0 . . . π], as in Figure 59.

0 π
Figure 59: Problem 35: One-sided spectrum.
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36. Problem: A LTI filter is characterized by its difference equation y[n] = 0.25x[n]+0.5x[n−
1] + 0.25x[n − 2]. (a) Draw the block diagram, (b) What is the impulse response h[n],

(c) Determine the frequency response H(ejω) =
P

pke−jωk
P

dke−jωk , (d) Determine the amplitude

response |H(ejω)|, (e) Determine the phase response ∠H(ejω), (f) Determine the group

delay τ(ω) = −d∠H(ejω)
dω

.

Solution: (Mitra 2Ed Sec. 4.2.7, 4.2.6 / 3Ed Sec. 3.8.3, 3.9.1 ) LTI system can be
characterized by a linear constant coefficient difference equation of form

∑

k

dky[n− k] =
∑

k

pkx[n− k]

The corresponding frequency response can be derived by Fourier transform (ax[n− k]↔
ae−jωkX(ejω)) or directly

H(ejω) =

∑
pke

−jωk

∑
dke−jωk

a) Draw! (You can use http://www.cis.hut.fi/Opinnot/T-61.3010/Suodin/ but
that was not in use in January 2007.)

b) As earlier explained, h[n] = 0.25δ[n] + 0.5δ[n− 1] + 0.25δ[n− 2].

c) The frequency response H can be expressed by its amplitude response |H| and the
angle ∠H :

H(ejω) = |H(ejω)|ej∠H(ejω)

Now using the expression above,

H(ejω) =
0.25 + 0.5e−jω + 0.25e−j2ω

1

In this particular case, when there exists a certain type of symmetry in the impulse
response h[n] (Mitra 2Ed Sec. 4.4.3 / 3Ed Sec. 7.3 ), we may continue

H(ejω) = 0.25 + 0.5e−jω + 0.25e−j2ω

= e−jω
(

0.25ejω + 0.5 + 0.25e−jω
)

= e−jω
(

0.5 cos(ω) + 0.5
)

d) When computing values for the amplitude response in range [0 . . . π] we will get the
curve which says if the filter is lowpass / highpass / etc. |A ·B · C| = |A| · |B| · |C|.

|H(ejω)| = |e−jω|
︸ ︷︷ ︸

=1

· |
(

0.5 cos(ω) + 0.5
)

| = |0.5 cos(ω) + 0.5|

e) Now, in this case we see that the phase response is linear. ∠(A ·B ·C) = ∠A+∠B +
∠C.

∠H(ejω) = ∠e−jω + ∠
(

0.5 cos(ω) + 0.5
)

︸ ︷︷ ︸

=0

= −ω

f) In case of linear phase response, the group delay is constant for all frequencies. In
this case the output sequence is delayed by 1 in the filter.

τ(ω) = − d

dω
∠H(ejω) = 1
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37. Problem: Show that the periodic impulse train p(t) =
∑∞

n=−∞ δ(t−nT ) can be expressed
as a Fourier series p(t) = 1

T

∑∞
k=−∞ ejΩT kt, where ΩT = 2π/T is the sampling angular

frequency.

Solution: Since p(t)

p(t) =
∞∑

n=−∞

δ(t− nT )

is a periodic function of time t with a period T (time between samples), it can be repre-
sented as Fourier series (F-series for periodic, F-transform for non-periodic signals):

p(t) =
∞∑

n=−∞

cn ej(2πnt/T )

where Fourier coefficients (note, p(t) over one period T )

cn =
1

T

∫

T

p(t) e−j(2πnt/T ) dt

The unit impulse function (continous-time) has properties
(1)
∫∞

−∞
δ(t) dt = 1, and

(2)
∫∞

−∞
δ(t)a(t) dt = a(t)|t=0.

Therefore Fourier series coefficients are:

cn =
1

T

∫ T/2

−T/2

δ(t) e−j(2πnt/T )dt =
1

T
e−j(2πnt/T )|t=0 =

1

T

Hence

p(t) =

∞∑

n=−∞

δ(t− nT ) =
1

T

∞∑

n=−∞

ej(2πnt/T )

t n

p(t) cnT

1/T

−2

... .........

−1 0 1 2 3 4

Figure 60: Problem 37: impulse train p(t) left, and its Fourier series coefficients cn right.
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38. Problem: Impulse train in Problem 37 can be also expressed as a Fourier transform
P (jΩ) = 2π

Ts

∑∞
k=−∞ δ(Ω − k Ωs). Sampling can be modelled as multiplication in time

domain x[n] = xp(t) = x(t)p(t). What is Xp(jΩ) for an arbitrary input spectrum X(jΩ)?

Solution: The Fourier series of a continuous-time signal can be expressed

x(t) =
∞∑

k=−∞

ak ejkΩ0t

where ak are Fourier coefficients and Ω0 is fundamental angular frequency. Fourier trans-
form of a periodic signal can be written in form of

X(jΩ) =
∞∑

k=−∞

2πak δ(Ω− kΩ0)

So, the impulse train p(t) of Problem 37 with all coefficients ak = 1/Ts and fundamental
angular frequency Ωs can be written as

P (jΩ) =
2π

Ts

∞∑

k=−∞

δ(Ω− kΩs)

Sampling in time and frequency domain can be modeled x[n] = x(t) · p(t)↔ 1
2π

[
X(jΩ) ⊛

P (jΩ)
]
, which finally gives

1

2π

[
P (jΩ) ⊛ X(jΩ)

]
=

1

2π

∫ ∞

−∞

P (jθ)X(j(Ω− θ))dθ

=
1

2π

∫ ∞

−∞

2π

Ts

∞∑

k=−∞

δ(θ − kΩs)X(j(Ω− θ))dθ

=
1

Ts

∞∑

k=−∞

∫ ∞

−∞

δ(θ − kΩs)X(j(Ω− θ))dθ |
∫

δ(t)x(t)dt = x(t)|t=0

=
1

Ts

∞∑

k=−∞

X(j(Ω− kΩs))

In other words, the spectrum X(ejω) of the discrete-time signal x[n] can be obtained
by summing the shifted spectra X(jΩ) of the corresponding analog signal x(t). Spectra
X(jΩ) are scaled by (1/Ts) and copied at every sampling (angular) frequency.

W

P(jW)

−2

... ...

0 2 4

2pi/T

W−2 0 2 4

X(jW)

W

......

(1/T) P(jW) * X(jW)

Figure 61: Problem 38: Left, an example of a spectrum P (jΩ) of an impulse train, middle, a
spectrum X(jΩ) of an arbitrary signal, and their convolution in right. Notice that X(jΩ) is
not symmetric, which means that x(t) is complex-valued.
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39. Problem: Suppose that a continuous-time signal x(t) and its spectrum |X(jΩ)| in Fig-
ure 62 are known. The highest frequency component in the signal is fh. The signal is
sampled with frequency fs, i.e. the interval between samples is Ts = 1/fs: x[n] = x(nTs).
Sketch the spectrum |X(ejω)| of the discrete-time signal, when (a) fh = 0.25 fs, (b)
fh = 0.5 fs, (c) fh = 0.75 fs.

hf

1

|X(jw)|

Figure 62: Spectrum X(jΩ) in Problem 39 also at page 14.

Solution: The spectrum X(jΩ) of a real analog signal is symmetric around y-axis.
When sampling, the spectrum X(ejω) is 2π-periodic (sampling frequency)

x[n] = xp(nTs) = x(t)p(t) ↔ X(ejω) =
1

Ts

∞∑

k=−∞

X(j(Ω− kΩs))

a) Figure 63. The highest component of x(t) is only 0.25 · fs ⇒ No aliasing.

f  /2 fs sh

1

f

|X  (j   )|p ω

Figure 63: fh = 0.25 fs, no aliasing in Problem 39(a).

b) Figure 64. Case: Nyquist frequency, half of the sampling frequency.

1

f h

2

|X  (j   )|p ω

sf  /2s f s f

Figure 64: fh = 0.5 fs, critical sampling in Problem 39(b).

c) Figure 65. Aliasing takes place. X(ejω) is the sum of all folded analog spectra. The
spectrum X(ejω) is depicted in Figure 65 with a thick continuous line.

X(ejω) =
1

Ts

(

... + X(j(Ω− Ωs)) + X(jΩ) + X(j(Ω + Ωs)) + ...

)

1

f h

2 3

p|X  (j   )|

f  /2s f s sfsf

ω

Figure 65: fh = 0.75 fs, aliasing in Problem 39(c).
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40. Problem: Consider a continuous-time signal x̃(t) = cos(2πf1t)+cos(2πf2t)+cos(2πf3t),
where f1=100 Hz, f2=300 Hz and f3=750 Hz. The signal is sampled using frequency fs.
Sketch the magnitude of the Fourier spectrum of x[n], when fs equals to (i) 1600 Hz (ii)
800 Hz (iii) 400 Hz.

Use an ideal reconstruction lowpass filter whose cutoff frequency is fs/2 for each case.
What frequency components can be found in reconstructed analog signal xr(t)?

Solution: There is a continuous-time signal

x(t) = cos(2πf1t) + cos(2πf2t) + cos(2πf3t)

Let f1 = 100 Hz, f2 = 300 Hz and f3 = 750 Hz.

It is possible directly to express the Fourier transform of a periodic signal using transform
pairs (or see Page 75). In this case using Hertz

X(jf) = π ·
(
δ[f + 750] + δ[f + 300] + δ[f + 100] + δ[f − 100] + δ[f − 300] + δ[f − 750]

)

The signal is sampled with sampling frequency fs, (T = 1/fs).

x[n] = x(nT ) = x(
n

fs

) =

(

cos(2π
f1

fs

n) + cos(2π
f2

fs

n) + cos(2π
f3

fs

n)

)

In the frequency domain the discrete-time spectrum Gp(jΩ) can be seen as a sum of shifted
and scaled replicas of the analog spectrum Ga(jΩ) as shown in Problems 38 and 39 (Mitra
2Ed Eq. 5.9, p. 302 / 3Ed Eq. 4.10, p. 174 ):

Gp(jΩ) =
1

T

∞∑

k=−∞

Ga(j(Ω− kΩT ))

Alternatively, sampling can be considered as flipping the analog spectrum around each
half of the sampling frequency down to the band 0 . . . fs/2.

Reconstruction means converting a digital sequence back to analog signal. An ideal
lowpass filter with the passband up to half of the sampling frequency is used. When
reconstructing signals we can only observe frequencies up to Nyquist frequency.1 If there
are frequencies over the Nyquist frequency in the original signal, those frequencies are
aliased into low frequencies.

In this problem X(jΩ) is sampled with three different sampling frequencies fs of 1600 Hz,
800 Hz and 400 Hz, The Nyquist frequency is the half of the sampling frequency fs/2,
800 Hz, 400 Hz, and 200 Hz, respectively. Let fm (in this case 750 Hz) be the biggest
frequency found in the input signal. If the sampling frequency is less than 2fm = 1500
Hz, then there will be aliasing.

In the following figures for i, ii and iii, the scale and magnitude values for aliased frequen-
cies are not exactly correct. Phase shifts in input signal cause that a pure addition of
magnitudes will not hold. (The sum of two cosines with same frequency and phase shift
of π is zero. However, in practice, this is rarely significant.)

i) fs = 1600 Hz, highest frequency component fm = 750 Hz. The inequality 1600 >
2 · 750 holds, hence, there is no aliasing. All three frequencies can be recovered. See
Figure 66.

1There is variation in using “Nyqvist frequency” in the literature. It is either (1) half of the sampling
frequency (Mitra 2Ed p. 302 / 3Ed p. 174 ) or (2) the highest frequency in the signal (Mitra 2Ed p. 304 / 3Ed
p. 176 ). The first one is much more common. The reader should not confuse with this.
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Figure 66: Sampling in Problem 40(i) with sampling frequency 1600 Hz: original analog spec-
trum X(jΩ) (left top), and spectrum X(ejω) of the discrete-time signal (left bottom). Time
domain view (right), top down x(t), sampling x(t) · p(t) sampled sequence x[n] to be processed
with DSP, reconstruction, and reconstructed continuous-time signal xr(t). Again, in this case
no aliasing, i.e. x(t) ≡ xr(t).

ii) fs = 800 Hz, highest frequency component fm = 750 Hz. The inequality 800 > 2 ·750
does not hold, hence, there is aliasing. All frequencies over 400 Hz are missed (750 Hz
in this case); they cannot be observed. There is a new alias component at frequency
50 Hz. See Figure 67.
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Figure 67: Sampling in Problem 40(ii) with sampling frequency 800 Hz. Aliasing occurs,
x(t) 6= xr(t), compare the top and bottom axis in the figure right.

Before going further, there is a short demonstration on the aliasing signal component
x3(t) (fi = 750 Hz) of the signal x(t) in Figure 68. The figures are depicted in
time-domain: (a) original x(t) with period T = 1/f = (1/750) = 1.333 ms, (b)
samples x[n] using interval Ts = 1/fs = (1/800) = 1.250 ms, (c) reconstructed
signal x3r(t), whose period Tr = (1/50) = 20 ms. The same aliasing effect can be
shown using the cosine function, which is 2π-periodic (cos(ωn) ≡ cos(ωn + 2π)) and
even (cos(−ωn) ≡ cos(ωn)). The highest component x3(t) of 750 Hz aliases in the
sampling and reconstructing process to 50 Hz:

x3(t) = cos(2π 750t) | original: 750 Hz

x3[n] = x3(n/fs) = cos(2π(750/800)n) = cos(2π(750/800)n− 2πn) | 2π-periodicity

= cos(2π(−50/800)n) = cos(2π(50/800)n) | even function

x3r(t) = cos(2π 50t) | reconstructed: 50 Hz

T-61.3010 DSP 2007 (B+C) 79/152 SOLUTIONS

−1

0

1
T=(1/750)=1.33ms

x 3(t
)

−1

0
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n]
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0

1
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x 3r
(t

)

Figure 68: Demonstration of aliasing of a single cosine in Problem 40(ii).

iii) fs = 400 Hz, highest frequency component fm = 750 Hz. The inequality 400 > 2 ·750
does not hold, hence, there is aliasing. All frequencies over 200 Hz are missed (300
and 750 Hz). There are new alias components at frequencies 50 and 100 Hz. See
Figure 69.
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Figure 69: Sampling in Problem 40(iii) with sampling frequency 400 Hz. Aliasing occurs again,
x(t) 6= xr(t).

After ideal reconstruction (x[n]→ xr(t)) there are the following components left:

(i) original 100, 300, 750 Hz.

(ii) original 100, 300 Hz, and an alias 50 Hz.

(iii) original 100 Hz, and aliases 50, 100 Hz.

There is a sampling (aliasing) demo in the demo section in the course web pages http:

//www.cis.hut.fi/Opinnot/T-61.3010/ Demo can also be loaded to Matlab.
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41. Problem: Real analog signal x(t), whose spectrum |X(jΩ)| is drawn in Figure 70, is
sampled with sampling frequency fs = 8000 Hz into a sequence x[n].

(a) Smallest sufficient sampling frequency? (b) How many samples in x[n]? (c) Sketch the
spectrum |X(ejω)|. (d) Filter with LTI in Figure 70. Output y[n] reconstructed (ideally)
to continuous-time yr(t). Sketch the spectrum |Yr(jΩ)|.

|X(j   )|Ω

84 f (kHz) −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

21

Figure 70: Problem 41: Spectrum left. Pole-zero plot right.

Solution: The Shannon (Nyqvist) sampling theorem is discussed in (Mitra 2Ed Sec. 5.2,
p. 302 / 3Ed Sec. 4.2, p. 176 ).

a) The highest frequency component in the analog signal is fh = 9 kHz. Thus the
required sampling frequency would be fT = 2fh = 18 kHz.

b) The sampling frequency is 8 kHz, which means that there are 8000 samples each
second. Now

x

0.2 s
=

8000

1 s

gives 1600 samples for 0.2 seconds.

c) Due to too low sampling frequency aliasing occurs. All frequency components above
fT /2 = 4 kHz are aliased into low frequencies between 0 . . . 4 kHz. Sampling in the
frequency domain can be considered as copying the original analog spectrum at each
multiple of the sampling frequency (Mitra 2Ed Eq. 5.9, p. 302 / 3Ed Eq. 4.10, p.
174 )

Gdiscrete(jΩ) =
1

T

∞∑

k=−∞

Ganalog(j(Ω + kΩT ))

Here we show another way of finding the discrete-time spectrum. If the analog signal
is real-valued and the amplitude spectrum therefore symmetric around y-axis, the
sampling can also be thought as flipping each fT /2 wide band of the analog spectrum
downwards into the fundamental range 0 . . . fT /2.

First, divide the spectrum to a set of bands, whose width is fT /2. In this case we
have B0 = [0 . . . 4000) Hz, B1 = [4000 . . .8000) Hz, and B2 = [8000 . . . 12000) Hz.

Flip the band B2 around 8000 Hz (mirror) down to B1. Spectral components of B1

and the mirrored B2 are summed together. See Figure 71 left top. Note! Sinusoidal
components with opposite phase (180◦) vanish: sin(ωB2→B1n) + sin(ωB1n + π) = 0,
if ωB2→B1 = ωB1. However, in practice this is not usual, and the addition operation
can be considered as a good approximation.

Finally, the band B1 is mirrored around 4000 Hz down to the fundamental band B0,
and the spectral components are summed together. See Figure 71 left bottom and
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84 12

B B10

84 12

B B B10 2 |X(e   )|jω

84 f (kHz)

|X(j   )|Ω

Figure 71: Problem 41: (a) Two steps when mirroring spectral bands down to the fundamental
band 0 . . . 4 kHz. (b) Discrete-time spectrum |X(ejω)|. Scaling factors are not taken into
account.

the final result in Figure 71 right. Scaling factors (height) are not taken into account
here.

d) If pole-zero plots are not familiar, consult (Mitra 2Ed Sec. 4.3.4 / 3Ed Sec. 6.7.4 )
or Problem 46, p. 88.

The sampling frequency is 8 kHz. In the pole-zero plot the whole circle 2π corre-
sponds 8 kHz. The upper part of the circle from ω = 0 to ω = π is 0 . . . 4 kHz.
There are zeros on the unit circle from 2 . . . 4 kHz. Hence, the filter is a lowpass
filter, whose cut-off frequency is about at 2 kHz.

The discrete-time signal x[n] is filtered with a lowpass filter. Here we use a rough
approximation of the filter depicted with a pole-zero plot, an ideal lowpass filter
H(ejω) with cut-off at 2 kHz. The spectrum of filtered signal is Y (ejω) = H(ejω) ·
X(ejω) shown in Figure 72(a). Note! Filter with zeros like in Figure 70 is not ideal.
You can plot its real amplitude response using Matlab.

After reconstructing ideally (ideal lowpass filter with cut-off at fT /2) the sequence
y[n] back to analog yr(t), the spectrum |Yr(jΩ)| is plotted in in Figure 72(b).

|Y(e   )|jω

84 f (kHz)

Ω|Y(j   )|

84 f (kHz)12 20

Figure 72: Problem 41: (a) Spectra |Y (ejω)| and (b) |Yr(jΩ)|. Discrete-time spectrum |Y (ejω)|
is periodic every 2π (or every fT ), wheras continuous-time spectrum |Yr(jΩ)| is not periodic.
Scaling factors are not taken into account.
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42. Problem: Sketch specifications and compute the order for an anti-aliasing Butterworth
filter with fs = 8 kHz, interesting band 0 . . . 2 kHz, and minimum stopband attenuation
50 dB.

Solution: An anti-aliasing filter is an analog lowpass filter used in order to remove
components, which cause aliasing when sampling (Mitra 2Ed Sec. 5.6 / 3Ed Sec. 4.6 ).
Consider an analog signal x(t) and its spectrum X(jΩ) depicted in Figure 73.

f

|X|

kHz8642
Figure 73: Spectrum X(jΩ) in Problem 42.

In the following, notations of (Mitra 2Ed Fig. 5.28 / 3Ed Fig. 4.34 ) are used, Ωp for
passband edge frequency, Ω0 = ΩT −Ωp for stopband edge frequency, and ΩT for sampling
frequency. Now that the interesting band stops at Ωp = 2 kHz and the sampling frequency
is ΩT = 8 kHz, we can set the edge frequency for the stopband to be at Ω0 = (8− 2) = 6
kHz (see Figure 74). After sampling there will be aliasing components in 2 . . . 4 kHz, but
we are not interested in them, i.e. we use digital filtering for that band.

f

|X|

kHz8642

Figure 74: Problem 42: Spectrum X(jΩ), specifications for a LP filter (dashed line), frequency
components that would alias in 0 . . . 2 kHz without anti-aliasing filtering (gray).

When the specifications are not so tight as they normally (cut-off at 4 kHz) are, also the
order of the anti-aliasing filter is lower. The design of the anti-aliasing filter can be made
even easier by increasing sampling frequency with analog circuits (order of anti-aliasing
filter decreases), and afterwards decrease sampling frequency using multirate techniques
(Mitra 2Ed Sec. 10 / 3Ed Sec. 13 ).

Calculations using (Mitra 2Ed Table 5.1 / 3Ed Table 4.1 ) or Table 7: Ω0/Ωp = 3→ N =
⌈50/9.54⌉ = 6. Note that if the passband ended at 2 kHz and the stopband started at 4
kHz, the required order of the filter would be 10.

Ω0 = 2Ωp 3Ωp 4Ωp

Attenuation (dB) 6.02N 9.54N 12.04N
ΩT = 3Ωp 4Ωp 5Ωp

Table 7: Approximate minimum stopband attenuation of a Butterworth lowpass filter, (Mitra
2Ed Table 5.1, p. 336 / 3Ed Table 4.1, p. 210 ). See the text in Problem 42 for details.
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43. Problem: The exponent term in DFT/IDFT is commonly written WN = e−j2π/N .

a) Compute and draw in complex plane values of W k
3

b) Compute 3-DFT for the sequence x[n] = {1, 3, 2}.

Solution: Discrete Fourier transform (DFT), left, and Inverse Fourier transform (IDFT),
right, using N points are defined

X[k] =
N−1∑

n=0

x[n]W kn
N x[n] =

1

N

N−1∑

k=0

X[k]W−kn
N , WN = e−

j2π
N

a) WN = e−
j2π
N , now N = 3.

W 0
3 = e−

j2π
3

·0 = 1

W 1
3 = e−

j2π
3

·1 = −0.5−
√

3

2
j

W 2
3 = e−

j2π
3

·2 = −0.5 +

√
3

2
j

Notice that the exponent in W defines the angle jump
in clockwise. What are the values of W kn

3 , when k =
0 . . . 2 and n = 0 . . . 2?. For example, k = 1, n = 2,
we get W 1·2

3 = W 2
3 . Specially, W 2·2

3 = W 4
3 = e−

j2π
3

·4 =

e−
j2π
3

·3
︸ ︷︷ ︸

=1

·e− j2π
3

·1 = W 1
3 .

k, n 0 1 2

0 W 0
3 W 0

3 W 0
3

1 W 0
3 W 1

3 W 2
3

2 W 0
3 W 2

3 W 1
3

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Problem 3a. W
3
 = e−j 2 π / 3

W
3
0

W
3
1

W
3
2

b) The sequence x[n] = {1, 3, 2} is of length 3.

X[0] =

2∑

n=0

x[n]W 0·n

= 1 + 3 + 2 = 6

X[1] =

2∑

n=0

x[n]W 1·n

= 1 ·W 0 + 3 ·W 1 + 2 ·W 2

= 1 + (−1.5− 3
√

3

2
j) + (−1 +

2
√

3

2
j) = −1.5−

√
3

2
j

X[2] =

2∑

n=0

x[n]W 2·n

= 1 ·W 0 + 3 ·W 2 + 2 ·W 4

= 1 + (−1.5 +
3
√

3

2
j) + (−1− 2

√
3

2
j) = −1.5 +

√
3

2
j

Remark. Notice that
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– DFT is discrete in frequency domain (DTFT is continuous)

– N-point DFT of a real signal is (very often) complex

– if N-point DFT is real-valued then x[n] has to be “symmetric”

– each value of X[k] is a dot product of x[n] and W with some constant angle
jump (nk)

– X[0] is the sum of values of x[n] (DC-component)

– values of X[k] are N-periodic: X[k] = X[k + N ] = X[k + 2N ] = . . .

– absolute values (amplitude spectrum) are even |X[1]| = |X[−1]|
– angle values are odd ∠X[1] = −∠X[−1]

Discrete Fourier transform is a linear operation. It can be calculated in matrix form
as (Mitra 2Ed Sec. 3.2.2 / 3Ed Sec. 5.2.2 )

X = DNx

where X is a column vector of the N frequency-domain DFT samples, x is a column
vector of N time-domain input samples, and DN is the N ×N DFT matrix (dftmtx
in Matlab)

X = [X[0] X[1] . . . X[N − 1]]T

x = [x[0] x[1] . . . x[N − 1]]T

DN =










1 1 1 . . . 1
1 W 1

N W 2
N . . . W N−1

N

1 W 2
N W 4

N . . . W
2(N−1)
N

...
...

...
. . .

...

1 W N−1
N W

2(N−1)
N . . . W

(N−1)(N−1)
N










In this problem dftmtx gives as expected

D3 =





1.0000 1.0000 1.0000
1.0000 −0.5000− 0.8660i −0.5000 + 0.8660i
1.0000 −0.5000 + 0.8660i −0.5000− 0.8660i





In the inverse DFT x = D−1
N X the matrix D−1

N is

D−1
N =

1

N










1 1 1 . . . 1

1 W−1
N W−2

N . . . W
−(N−1)
N

1 W−2
N W−4

N . . . W
−2(N−1)
N

...
...

...
. . .

...

1 W
−(N−1)
N W

−2(N−1)
N . . . W

−(N−1)(N−1)
N










It can be seen that D−1
N = (1/N)D∗

N .
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44. Problem: Let h[n] and x[n] be two finite-length sequences h[n] = {5, 2, 4} and x[n] =
{−3, 4, 0, 2}.

a) Determine the linear convolution yL[n] = h[n] ⊛ x[n].

b) Determine the circular convolution yC[n] = he[n] 4© x[n], where he[n] is extended to
length of 4 by zero-padding.

c) Determine the circular convolution yC [n] = he[n] 6© xe[n], where both sequences are
extended to length of 6 by zero-padding.

Solution: In this problem linear convolution yL[n] (Mitra 2Ed Sec. 2.5.1 / 3Ed Sec.
2.5.1 ) and circular convolution yC[n] (Mitra 2Ed Sec. 3.4.2 / 3Ed Sec. 5.4.2 ) are com-
puted using sequences h[n] = {5, 2, 4} and x[n] = {−3, 4, 0, 2}.
Linear convolution y[n] = h[n] ⊛ x[n] can be computed using “flip and slide” method in
Figure 75(a). x[n] is flipped and at each n the items are multiplied and finally all summed
together. In the figure, when n = 1, it gives yL[1] = h[0]x[1−0]+h[1]x[1−1]+h[2]x[1−2] =
20− 6 + 0 = 14.

Computation of circular convolution yC [n] = h[n] N©x[n] can be illustrated with “a circular
buffer” of length N in Figure 75(b) and (c). x[n] is flipped and at each n the items are
multiplied. There are always N terms to be added to get the result at n. In the figure,
when N = 4 and n = 1, it gives yC [1] = h[0]x[1] + h[1]x[0] + h[2]x[3] + h[3]x[2] =
20− 6 + 8 + 0 = 22.

−3k −2 −1 0 1 2 3

x[1−k] 4 −3020 00

h[k] 5 2 4000 0
h[0] h[1] h[2]h[−1]h[−2]h[−3] h[3]

x[0] x[−2]x[−1]x[1]x[2]x[3]x[4]

52

4 0

01

32

4−3
x[1]x[0]

x[3]
2 0

x[2]

h[2] h[3]

h[1] h[0]

k
h[k] 5 2 4000 0

h[0] h[1] h[2]h[−1]h[−2]h[−3] h[3]

x[0] x[2]x[3]x[1]x[2]x[3]x[0]

4 −302−3 02x[<1−k>  ]

−3k −2 −1 0 1 2 3

4

Figure 75: Problem 44: Convolution depicted with “flip and slide” method, (a) left, linear
convolution, (b) right, circular convolution with N = 4. As an example, in both cases the
convolution sum is computed at n = 1.

a) Linear convolution: yL[n] =
∑2

k=0 h[k]x[n−k]. Its length will be L{h[n]}+L{x[n]}−
1 = 6. Using “flip around and slide”:

yL[0] = h[0]x[0] = 5 · (−3) = −15

yL[1] = h[0]x[1] + h[1]x[0] = 5 · 4 + 2 · (−3) = 14

yL[2] = h[0]x[2] + h[1]x[1] + h[2]x[0] = 5 · 0 + 2 · 4 + 4 · (−3) = −4

yL[3] = h[0]x[3] + h[1]x[2] + h[2]x[1] = 5 · 2 + 2 · 0 + 4 · 4 = 26

yL[4] = h[1]x[3] + h[2]x[2] = 2 · 2 + 4 · 0 = 4

yL[5] = h[2]x[3] = 4 · 2 = 8

Therefore,
yL[n] = {−15, 14, −4, 26, 4, 8}
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b) Circular convolution is computed in N = 4 points

yC[n] = he[n] 4© x[n] =

3∑

k=0

he[k]x[< n− k >4]

where he[n] = {5, 2, 4, 0} is zero-extended version of h[n], and < n >4 is modulo-4
operation. Hence, h[< n− 5 >4] = h[< n− 1 >4], i.e. the sequence can be thought
to be periodic with the period {h[0], h[1], h[2], h[3]}.

yC[0] = he[0]x[< 0− 0 >4] + he[1]x[< 0− 1 >4] +

he[2]x[< 0− 2 >4] + he[3]x[< 0− 3 >4]

= he[0]x[0] + he[1]x[3] + he[2]x[2] + he[3]x[1]

= 5 · (−3) + 2 · 2 + 4 · 0 + 0 · 4 = −11

yC[1] = he[0]x[1] + he[1]x[0] + he[2]x[3] + he[3]x[2]

= 5 · 4 + 2 · (−3) + 4 · 2 + 0 · 0 = 22

yC[2] = he[0]x[2] + he[1]x[1] + he[2]x[0] + he[3]x[3]

= 5 · 0 + 2 · 4 + 4 · (−3) + 0 · 2 = −4

yC[3] = he[0]x[3] + he[1]x[2] + he[2]x[1] + he[3]x[0]

= 5 · 2 + 2 · 0 + 4 · 4 + 0 · (−3) = 26

Thus,
yC[n] = {−11, 22, −4, 26}

c) Circular convolution using N = 6 points

yC [n] = he[n] 6© xe[n] =

5∑

k=0

he[k]x[< n− k >6]

where he[n] = {5, 2, 4, 0, 0, 0}, and xe[n] = {−3, 4, 0, 2, 0, 0} are zero-padded
versions. Computing like in (b) the result is

yC [n] = {−15, 14, −4, 26, 4, 8} ≡ yL[n]

If N in circular convolution is chosen so that N ≥ L{yL[n]}, then yC [n] = yL[n].

Remark. Circular convolution has a close connection to Discrete Fourier Transform
(DFT). For example, in (b)

yC[n] = he[n] 4© x[n] DFT-4−−−−→ He[k] ·X[k] = YC[k] IDFT-4−−−−−→ yC[n]
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45. Problem: Consider a LTI system depicted in Figure 76. (a) Difference equation? (b)
Compute X(z) when x[n] = (−0.8)nµ[n]. (c) Transfer function H(z)? (d) Compute y[n].

z−1 z−1

0.8

x[n] y[n]

z−1

−0.2

0.9

x[n−1]

y[n−1]

y[n−2]

y[n] y[n]

y[n]

x[n] + 0.8 x[n−1]

0.9 y[n−1] − 0.2 y[n−2]

w[n]

Figure 76: LTI system of Problem 45.

Solution:

a) The input-output-relation is y[n] − 0.9y[n − 1] + 0.2y[n − 2] = x[n] + 0.8x[n − 1].
Notice that the coefficients in the diagram are also present in the difference equation
(past output values maybe as opposite numbers).

b) If computing using the definition, see Problem 32(b). From the z-transform table
directly:

Z{anµ[n]} =
1

1− az−1
ROC: |z| > |a|

(−0.8)nµ[n] ↔ 1

1 + 0.8z−1
|z| > 0.8

c) Using the z-transform pair K · w[n− n0]↔ K · z−n0W (z):

y[n]− 0.9y[n− 1] + 0.2y[n− 2] = x[n] + 0.8x[n− 1] | z-transform

Y (z)− 0.9z−1Y (z) + 0.2z−2Y (z) = X(z) + 0.8z−1X(z)

Y (z)
(
1− 0.9z−1 + 0.2z−2

)
= X(z)

(
1 + 0.8z−1

)

Y (z) = X(z)
1 + 0.8z−1

1− 0.9z−1 + 0.2z−2
| /X(z)

H(z) = Y (z)/X(z) =
1 + 0.8z−1

1− 0.9z−1 + 0.2z−2
ROC: |z| > 0.5

The flow (block) diagram was given in direct form (DF) (Mitra 2Ed Sec. 6.4.1 /
3Ed Sec. 8.4.1 ). The coefficients of the diagram are that of the difference equation
and transfer function. Coefficients in the loop (IIR subfilter) are in the denomi-
nator polynomial and coefficients of the FIR part can be found in the numerator
polynomial.

d) Using convolution theorem

Y (z) = H(z) ·X(z)

=
1 + 0.8z−1

1− 0.9z−1 + 0.2z−2
· 1

1 + 0.8z−1

=
1

1− 0.9z−1 + 0.2z−2
| partial fraction expansion

=
5

1− 0.5z−1
+

−4

1− 0.4z−1
| inverse z-transform

y[n] = 5 · (0.5)nµ[n]− 4 · (0.4)nµ[n]
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46. Problem: Consider the pole-zero plots in Figure 77.

a) What is the order of each transfer function?

b) Are they FIR or IIR?

c) Sketch the amplitude response for each filter.

d) What could be the transfer function of each filter?
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Figure 77: Pole-zero plots of LTI systems in Problem 46.

Solution: The z-transform of the impulse response h[n] of the LTI system is the transfer
function H(z) (with certain regions of convergence, ROCs, see Problem 48). It can be
written as a rational function in z−1 as follows

H(z) =
B(z)

A(z)
=

b0 + b1z
−1 + b2z

−2 + . . . + bMz−M

a0 + a1z−1 + a2z−2 + . . . + aNz−N
=

∑M
k=0 bkz

−k

∑N
k=0 akz−k

= K · (1− z1z
−1) · (1− z2z

−1) · . . . · (1− zMz−1)

(1− p1z−1) · (1− p2z−1) · . . . · (1− pNz−1)
= K ·

∏M
k=1(1− zkz

−1)
∏N

k=1(1− pkz−1)

where bi are the coefficients of the numerator polynomial B(z), and ai are the coefficients
of the denominator polynomial A(z). The order of H(z) is max{M, N}.
Those points zi where B(z) = 0 are called “zeros”, and points pi where A(z) = 0 are called
“poles”. The figure with zeros (circles) and poles (crosses) plotted in the complex plane
is called “pole-zero plot” (diagram) of the transfer function.

The rules of thumb for determining amplitude response from the pole-zero-diagram
(Mitra 2Ed Sec. 4.3.4 / 3Ed Sec. 6.7.4 )

1. Examine the frequencies ω ∈ (0 . . . π), in other words, the observation point moves on
the unit circle counterclockwise from (1, 0j) to (−1, 0j). In each point the amplitude
response |H(ejω)| is estimated. A “simple” function H(ejω) has a smooth response.

2. The amplification is big, when a pole is close to unit circle (a small factor in de-
nominator) or a zero is far from unit circle. The closer the pole is to unit circle, the
narrower the amplification is in frequency area.

3. The amplification is small, when a pole is far from the unit circle (big factors in
denominator) or there is a zero close to unit circle.

4. The amplification is zero, if a zero is on the unit circle at observation frequency.

5. Poles or zeros in the origo do not affect at all because the distance is always 1.

6. The amplification cannot be found from pole-zero plot. Normally H(ejω) is scaled
so that the maximum value is set to be 1: H(ejω)← H(ejω)/ max{|H(ejω)|}.
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a) The order is the maximum of the number of poles or zeros (not in origo).

So, (i) 2 poles, 1 zero: 2nd order; (ii) 4 zeros: 4th order; (iii) 6 poles, 6 zeros: 6th
order.

Note, in analog H(s) there are only poles, but in digital H(z) there can be both
poles and zeros.

b) If there is any pole (cross in the graph) outside the origo, it means that there is at
least first-order polynomial in the denominator in H(z)⇔ there is a feedback in the
system ⇔ IIR.

Hence, (i) IIR; (ii) FIR; (iii) IIR.

c) The analysis with graphs is done below for each case separately.

Shortly, (i) lowpass with narrow passband; (ii) highpass; (iii) a comb filter.

d) The transfer function can be constructed from zeros zi and poles pi

H(z) = K ·
∏M

k=1(1− zkz
−1)

∏N
k=1(1− pkz−1)

However, the scaling factor K cannot be seen from the pole-zero-plot. Therefore K
is set so that max{|H(ejω)|} = 1.

Next, a closer look at (c) and (d) is given for each filter.

i) Without computing any exact values of the amplitude response, it is possible to
approximate it by looking at the positions of zeros and poles. The angular frequency
gets values from 0 to π, and the observation is done on a unit circle counterclockwise.

Poles are close to unit circle at ω = ±π/30 in Figure 78(a). Therefore the amplitude
response gets the maximum approximately at that frequency and the filter is lowpass
type, see the sketch in Figure 78(b). The closer the poles are the unit circle, the
narrower the maximum area is. The value at ω = π is zero.

In this case the exact locations of poles and zeros were known (z1 = −1, p1 =
0.8950 + 0.0947i, p2 = 0.8950 − 0.0947i). The actual transfer function is H(z) =
K · (1 + z−1)/(1 − 1.79z−1 + 0.81z−2) from which the actual frequency response is
received by z ← ejω. Some values in range 0 . . . π are computed below, and K is
chosen so that the maximum of |H(z)| is one. Figures are plotted using Matlab in
both linear scale and in logarithmic scale in Figure 78(c) and (d), respectively.

ω H(ejω) |H(ejω)| ω H(ejω) |H(ejω)|
0 1 1 3π/4 −.0008 + .0023j .0025

π/4 −.0277 + .0210j .0348 π 0 0
π/2 −.0049 + .0061j .0078

ii) There are four zeros in Figure 79(left). At ω ≈ π/6 the zeros are closest to the
observation point, and the minimum of the response is probably reached (bandstop).
At ω = π the zeros are much further away than at ω = 0, so the attenuation is much
stronger at low frequencies (highpass). Notice that |H(ej0)| 6= 0, because there is
not a zero on the unit circle at ω = 0. The filter can be a highpass or bandstop FIR
filter.

Actually, H(z) = 1− 3.753z−1 + 5.694z−2 − 3.753z−3 + z−4. Filter coefficients have
a certain symmetry as well as the zeros lie in a certain symmetry, which implies a
linear-phase filter, see Problem 49. The minimum of |H(ejω)| ≈ 0.0114 (scaled) at
ω ≈ 0.11π, which is different from π/6 estimated earlier. All “zero vectors” affect to
the response, see the remark text below.
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Figure 78: Problem 46(i): (a) Pole-zero-diagram, (b) an example of approximated amplitude
response, (c) actual amplitude response |H1(e

jω)| in linear scale, (d) actual amplitude response
|H1(e

jω)| in decibels.

iii) Zeros are on the unit circle at uniform invervals forcing the amplification drop down
to zero, see Figure 79(right). This type of periodic filter is often called a comb filter.
The maximum is scaled to one. Note that all poles and zeros affect, so that if there
were not exactly same intervals between poles and zeros, the amplitude response
would also turn out to be non-symmetric.
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Problem 2 (ii)
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Problem 2 (iii)
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Figure 79: Problem 46(ii),(iii): Pole-zero-diagram and corresponding amplitude response of
|H2(e

jω)| left, and |H3(e
jω)| right.

Remark. Determining amplitude response from the pole-zero-diagram, theory in back-
ground.

Any transfer function H(z) can be expressed in form of

H(z) =
|p0|
|d0|

(1− z1 z−1)(1− z2 z−1)...(1− zM z−1)

(1− p1 z−1)(1− p2 z−1)...(1− pN z−1)

In order to achieve this, all zeros (zi) and poles (pi) of H(z) has to be computed. Zeros
are the roots of the numerator polynomial and poles are the roots of the denominator
polynomial. Numerator part is “FIR part” (always stable, y[n] depends only on values of
x[n− ki]), denominator is “IIR part” (feedback, in order to compute y[n] some old values
of it has to be used).

Frequency response is the transfer function computed on unit circle, i.e. substitution
z = ejω:

H(ejω) =
|p0|
|d0|

(1− z1 e−jω)(1− z2 e−jω)...(1− zM e−jω)

(1− p1 e−jω)(1− p2 e−jω)...(1− pN e−jω)

We are interested in amplitude response |H(ejω)|. Because the expression is in a product
form, the absolute value of |H(ejω)| can be computed with its first order blocks. Let
K = |p0|/|d0|, Bi be the length of a first order block in numerator polynomial, and Ai the
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length of a first order block in denominator polynomial:

|H(ejω)| = K ·

B1
︷ ︸︸ ︷

|(1− z1 e−jω)|
B2

︷ ︸︸ ︷

|(1− z2 e−jω)| . . .
BM

︷ ︸︸ ︷

|(1− zM e−jω)|
|(1− p1 e−jω)|
︸ ︷︷ ︸

A1

|(1− p2 e−jω)|
︸ ︷︷ ︸

A2

. . . |(1− pN e−jω)|
︸ ︷︷ ︸

AN

= K ·
∏M

k=1 Bk
∏N

k=1 Ak

The frequency axis lies on the unit circle from ω = 0, which is a complex point ejω|ω=0 = 1
to ω = π, which is situated at ejω|ω=π = −1. The observation frequency ω0 gets values
0 . . . π.

Bi is called a “zero vector”, i.e. it is the length from the observation point ω0 to zero i.
Ai is a “pole vector” correspondingly.

Any small Ai (pole close to unit circle) gives big value of |H(ejω)|. Any small Bi (zero
close to unit circle) decreases |H(ejω)|. However, it should be noticed that |H(ejω)| is a
product of all zero vectors and all pole vectors.

For example, in Figure 80(a) M = 2 and N = 2:

|H(ejω)| = K ·

B1
︷ ︸︸ ︷

|(1− z1 e−jω)|
B2

︷ ︸︸ ︷

|(1− z2 e−jω)|
|(1− p1 e−jω)|
︸ ︷︷ ︸

A1

|(1− p2 e−jω)|
︸ ︷︷ ︸

A2

It can be roughly estimated that the filter is highpass, because around ω = 5π/6 A1

is smallest and therefore |H(ejω)| is at maximum. Actually the maximum might be at
ω = π, where A1 · A2 is probably smaller. The rough estimate of the amplitude response
(0 . . . ω0 . . . π) is given in Figure 80(b).

0ω

0=π ω

1

ωjz = e

A

/2π

B2
A2

B1

(a)

/ 20

|H(e^j    )|

ω

ω

1

0
0 ππ

(b)

Figure 80: (a) Zero vectors Bk and pole vectors Ak. ω runs 0..π. (b) Amplitude response
roughly from the pole-zero-diagram.

The rules of thumb were given on page 88.

It can also be seen that the frequency response in discrete-time domain is always 2π-
periodic. Because |H(ejω)| is an even function, it is only necessary to draw angles 0 . . . π.
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47. Problem: Consider the filter described in Figure 81.

y[n]x[n]

-0.81-1

-1Z

-1

Z-1

Z -1Z

Figure 81: LTI system of Problem 47, also at page 16.

a) Derive the difference equation of the system.

b) Calculate the transfer function H(z).

c) Calculate the zeros and poles of H(z). Sketch the pole-zero plot. Is the system
stable and/or causal?

d) Derive frequency response H(ejω).

e) Sketch the magnitude (amplitude) response |H(ejω)| roughly. Which frequency gives
the maximum value of |H(ejω)|?

f) Compute the equation for the impulse response h[n] using partial fraction expansion
and inverse z-transform.

Solution: Notice that the same filter can be represented (i) as a block diagram, (ii)
with a difference equation, (iii) with a transfer function (and ROC), (iv) with an impulse
response, (v) with poles, zeros and gain.

a) Difference equation: y[n] = x[n]− x[n− 2]− 0.81y[n− 2]

b) Transfer function H(z) can be obtained from h[n] using z-transform pairs:

Z{x[n]} = X(z)

Z{a · x[n− n0]} = a · z−n0 ·X(z) ROC : |z| > |a|

Hence,

y[n] = x[n]− x[n− 2]− 0.81y[n− 2]

Y (z) = X(z)− z−2X(z)− 0.81z−2Y (z)

(1 + 0.81z−2) · Y (z) = (1− z−2) ·X(z)

Y (z) = X(z) · 1− z−2

1 + 0.81z−2

H(z) =
Y (z)

X(z)
=

1− z−2

1 + 0.81z−2
ROC: |z| > 0.9

c) Zeros are the points, where the numerator of transfer function H(z) is zero:

1− z−2 = 0⇔ z2 = 1⇔ z = ±1.

Poles are the points, where the denominator of transfer function H(z) is zero:

1 + 0.81z−2 = 0 ⇔ z2 = −0.81 ⇔ z = ±0.9j

The pole-zero plot of the system is (a common notation is to use a© for a zero and
a × for a pole) in Figure 82(a).
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The system is causal, because current output does not depend on future values
of x[n] and y[n] (time-domain view). The system is stable, because the impulse
response h[n] is absolutely summable (time-domain view).

On the other hand, if all poles in the pole-zero plot are inside the unit circle, i.e.,
the region of convergence (ROC) includes both the unit circle and the infinity, the
filter is causal and stable (see Problem 48).

d) Frequency response of the system H(ejω) (continuous systems H(jΩ)) is obtained
by applying z = ejω (continuous s = jΩ). If the unit circle is contained in the ROC,
it is possible to apply H(ejω) = H(z)|z=ejω :

H(ejω) =
1− e−2jω

1 + 0.81e−2jω

e) The amplitude response can be computed as exact as wanted using the mathematical
functions. It can be computed also in specific points using calculator or computer.
These will be explained after the roughest way, which is graphical approximation
from poles and zeros.

The sketch the magnitude (amplitude) response |H(ejω)| can be drawn by using
pole-zero plot. There are zeros at z = 1 and z = −1. The corresponding angular
frequencies are 0 and π, because ej0 = 1 + 0j and ejπ = −1 + 0j. Hence, amplitude
response is zero when ω = 0 and ω = π. It is also clear that the maximum value
is at ω = π/2, where the pole is closest to the unit circle. A sketch is given in
Figure 82(b).
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Problem 4. Pole−zero−diagram
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Figure 82: Problem 47: (a) Pole-zero plot of H(z) and (b) |H(z)| as a grid and |H(ejω)| with
solid curve plotted with Matlab. (c) A rough sketch of amplitude response by hands using
pole-zero.

Second, the amplitude response H(ejω) = (1 − e−2jω)/(1 + 0.81e−2jω) can be cal-
culated in certain poins. More points, more exact amplitude response. Start with
points ω = {0, π/4, π/2, 3π/4, π}, and calculate more if it seems to be appropriate. If
your calculator does not support complex exponentials, decompose them by Euler’s
formula. (Notice that in Matlab you can use directly function exp.) A new sketch
is drawn in Figure 83.

ω H(ejω) |H(ejω)| ω H(ejω) |H(ejω)|
0 0 0 5π/8 0.6352 + 2.5067 2.5859

π/8 0.0199− 0.4568j 0.4573 3π/4 0.1147 + 1.0929j 1.0989
π/4 0.1147− 1.0929j 1.0989 7π/8 0.0199 + 0.4568j 0.4573

3π/8 0.6352− 2.5067j 2.5859 π 0 0
π/2 10.5263− 0.0000j 10.5263
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ππ/2

|H(e^jw)|

0

10.53

Figure 83: A sketch of amplitude response after computing several values in Problem 47(e).

Third, the magnitude response can (only sometimes) be simplified. For example, this
time the simplified version is relatively simple. Simplification is sometimes needed
to some proofs, etc.

|H(ejω)|2 = H(ejω)H⋆(ejω) = H(ejω)H(e−jω) | complex conjugate

=
1− e−2jω

1 + 0.81e−2jω
· 1− e+2jω

1 + 0.81e+2jω

=
1 + 1− (e2jω + e−2jω)

1 + 0.812 + 0.81(e2jω + e−2jω)

=
2− 2 cos(2ω)

1.6561 + 1.62 cos(2ω)
| square

|H(ejω)| gets the maximum value at frequency ω = π
2
. The maximum value is

|H(ejω)|max =
∣
∣H(ej π

2 )
∣
∣ ≈ 10.53

f) Notice that the partial fraction expansion can be written in various forms, see Prob-
lem 9, for instance. The transform pair anµ[n]↔ 1

1−az−1 is applied again.

H(z) =
1− z−2

1 + 0.81z−2

=
1

1 + 0.81z−2
− z−2 · 1

1 + 0.81z−2
| part. frac. exp.

=
[ 0.5

1− 0.9jz−1
+

0.5

1 + 0.9jz−1

]
− z−2

[ 0.5

1− 0.9jz−1
+

0.5

1 + 0.9jz−1

]

h[n] = 0.5 · ((0.9j)nµ[n] + (−0.9j)nµ[n])−
0.5 ·

(
(0.9j)n−2µ[n− 2] + (−0.9j)n−2µ[n− 2]

)

≈ {1.0000, 0, −1.8100, 0, 1.4661, 0, −1.1875, . . .}

Matlab (residuez) may give a different form of the same sequence:

h[n] ≈ −1.2346 · δ[n] + 1.1173 · (0.9j)nµ[n] + 1.1173 · (−0.9j)nµ[n]
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48. Problem: The transfer function of a filter is

H(z) =
1− z−1

1− 2z−1 + 0.75z−2

a) Compute the zeros and poles of H(z).

b) What are the three different regions of convergence (ROC)?

c) Determine the ROC and the impulse response h[n] so that the filter is causal.

d) Determine the ROC and the impulse response h[n] so that the filter is stable.

Solution: Let us begin by reviewing some properties (Mitra 2Ed Sec. 3.8 / 3Ed Sec.
6.3 )

• The filter is causal ⇔ ∞ belongs to the region of convergence (ROC).

• The filter is stable ⇔ unit circle belongs to ROC, H(z) converges on the unit circle.

• ROC on z-plane must not contain any poles; it may be a ring between two poles,
the disc limited by the closest pole to origin or the plane outside the most distant
pole from origin.

• It is easiest to do the the inverse z-transform (here) by calculating first the fractional
expansion of the H(z) and then inverting each part of it individually using the sum
of a geometric series.

• The sum of a geometric series is

∞∑

k=0

qk =
1

1− q
, |q| < 1

• The z-transform of h[n] is
∞∑

n=−∞

h[n]z−k

a) First we have to solve the poles and zeros:

H(z) =
1− z−1

1− 2z−1 + 0.75z−2
=

z(z − 1)

z2 − 2z + 0.75

Poles:

z2 − 2z + 0.75 = 0⇔ z =
2±
√

4− 4 · 0.75

2
⇔ z1 = 0.5, z2 = 1.5

Zeros:
z(z − 1) = 0⇔ z1 = 0, z2 = 1

b) Now we may answer to the questions about stability and causality using different
ROCs, see Figure 84:

i) If we require causality, the region of convergence has to include z = ∞ Thus,
the region of convergence has to be ”outside” the pole z = 1.5, that is |z| > 1.5.

ii) If we require stability, the unit circle has to be on the region of convergence.
Thus the region is a ring between the poles: 0.5 < |z| < 1.5

iii) If ROC is the inner cicle |z| < 0.5, we will have a noncausal and astable filter.
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Figure 84: Region of convergence (ROC) in gray in Problem 48: (i)∞ belongs to ROC - causal
filter, (ii) unit circle belongs to ROC - stable filter.

Note, that in this case we cannot have a filter that is both causal and stable.

At this point, when we calculate the impulse response h[n], we have to do an inverse
z-transformation for the transfer function H(z). To do this we express the H(z)
as a partial fraction expansion as then we may apply the formula of the sum of a
geometric series.

Using the poles and zeros we may write the transfer function as follows:

H(z) =
(1− z1z

−1)(1− z2z
−1)

(1− p1z−1)(1− p2z−1)
=

1− z−1

(1− 0.5z−1)(1− 1.5z−1)

⇔ H(z) =
A

1− 0.5z−1
+

B

1− 1.5z−1

⇔ 1− z−1 ≡ A(1− 1.5z−1) + B(1− 0.5z−1)

We solve A and B by letting z → 0.5 and z → 1.5

z → 0.5 : 1− 0.5−1 = A(1− 1.5 · 0.5−1) + B(1− 0.5 · 0.5−1

︸ ︷︷ ︸

=0

)

⇒ A = 0.5

z → 1.5 : 1− 1.5−1 = A(1− 1.5 · 1.5−1

︸ ︷︷ ︸

=0

) + B(1− 0.5 · 1.5−1)

⇒ B = 0.5

Now we may write the expansion

H(z) =
0.5

1− 0.5z−1
+

0.5

1− 1.5z−1

c) Causal filter ⇒ we know that |z| > 1.5. We notice that both fractions in

H(z) =
0.5

1− 0.5z−1
+

0.5

1− 1.5z−1

represent a sum of a geometric series, as |0.5z−1| < 1 and |1.5z−1| < 1 as required.
We conclude

hcausal[n] = Z−1{H(z)} = 0.5 · 0.5nµ[n] + 0.5 · 1.5nµ[n]

See Figure 85(a), the impulse response grows to infinity, i.e. it is not absolutely
summable, and therefore the filter is not stable with the criterion

∑

n |h[n]| <∞.
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d) Stable filter ⇒ we know that 0.5 < |z| < 1.5. We note that
∑∞

n=0 1.5nz−n does not
converge as |1.5

z
| ≥ 1. We have to convert the expression to higher terms in order to

get the denominator to suitable form:

Hp2(z) =
1

2
· 1

1− (3/2)z−1
| · (−(2/3)z)/(−(2/3)z)

= −1

3
z

1

1− (2/3)z

= −1

3
z

∞∑

n=0

(
2

3

)n

zn

= −1

3

∞∑

n=−∞

(
2

3

)n

µ[n]zn+1 | let −m = n + 1

= −1

3

∞∑

m=−∞

(
2

3

)−m−1

µ[−m− 1]z−m

Thus, the inverse transform of H(z) is

hstable[n] = 0.5 · 0.5nµ[n]− 1

3

(
2

3

)−n−1

µ[−n− 1]

which is plotted in Figure 85(b). The impulse response is non-zero for indices n < 0,
and the filter is not causal with criterion h[n] < 0, n < 0. The filter is stable.
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Figure 85: Problem 48: Left, 48(c) where ROC: |z| > 1.5 ⇔ filter is causal but not stable.
Right, 48(d) where ROC: 0.5 < |z| < 1.5⇔ filter is not causal but stable.

Remark. In practice, we operate with causal and stable filters, which means that
all poles should be inside the unit circle.

T-61.3010 DSP 2007 (B+C) 98/152 SOLUTIONS

49. Problem: Examine the following five filters and connect them at least to one of the
following categories (a) zero-phase, (b) linear-phase, (c) allpass, (d) minimum-phase, (e)
maximum-phase.

h1[n] = −δ[n + 1] + 2δ[n]− δ[n− 1]

H2(z) =
1 + 3z−1 + 2.5z−2

1− 0.5z−1

y3[n] = 0.5y3[n− 1] + x[n] + 1.2x[n− 1] + 0.4x[n− 2]

H4(z) =
0.2− 0.5z−1 + z−2

1− 0.5z−1 + 0.2z−2

H5(e
jω) = −1 + 2e−jω − e−2jω

Solution: Types of transfer functions are explained in (Mitra 2Ed Sec. 4.4, 4.6, 4.7, 4.8
/ 3Ed Sec. 7.1, 7.2, 7.3 ). After some work at least the following pairs can be mentioned:
(a) h1[n], (b) H5(e

jω), (c) H4(e
jω), (d) y3[n], and (e) H2(z).

If the coefficients of the transfer function are real-valued (as they are in this course), then
the pole and zero pairs must be complex conjugates: z1 = rejθ, z2 = re−jθ.

If the coefficients of the FIR filter are symmetric, Type I, II, III, and IV, (Mitra 2Ed
Sec. 4.4.3, 4.4.4 / 3Ed Sec. 7.3 ) and (Mitra 2Ed Fig. 4.14, 4.16 / 3Ed Fig. -, 7.17 ),
then the filter has linear phase response (or even zero-phase). The group delay (τ(ω) =
−d/dω ∠H(ejω)) of linear-phase filters is constant for all frequencies.

Another important term is mirror-symmetry respect to the unit circle. In this case the
connection between poles or zeros is: z1 = rejθ, z2 = (1/r)ejθ (and their complex conju-
gates).

For each filter type there is also another example. There are four figures a row for each
example, (i) impulse response, (ii) pole-zero-diagram, (iii) amplitude response in desibels
and x-axis in range 0 . . . π, (iv) phase response.

h1) This noncausal FIR filter has zero phase. The impulse response h1 = −δ[n + 1] +
2δ[n] − δ[n − 1] is symmetric around the origo in the time-domain. The frequency
response can be written

H1(e
jω) = −ejω + 2− e−jω = 2− 2 cos(ω)

|H1(e
jω)| = |2− 2 cos(ω)| ≥ 0 | ampl.resp. ∈ R

∠H1(e
jω) = 0 | phase resp.

− d

dω
∠H1(e

jω) = 0 | no delay at all

from which it can be seen that H1(e
jω) is real-valued. The phase response and group

delay (τ(ω) = −d/dω ∠H(ejω)) is therefore zero (or 180 degrees for negative values
of H(ejω)) for all frequencies, in other words, the filter is zero-phase (Mitra 2Ed Sec.
4.4.2 / 3Ed Sec. 7.2.1 ) and the signal is not delayed in the filter. Matlab command
filtfilt can be applied instead of filter.

Another example, see Figure 86. The zeros are situated mirror-symmetrically ac-
cording to the unit circle, and the impulse response and the transfer function are

h[n] = {1, 3.2893, 3.8875, 0.0884,−3.0407, 0.0884, 3.8875, 3.2893, 1}
H(z) =

∑

n

h[n]z−n
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Figure 86: An example of a zero-phase transfer function in Problem 49. Subfigures (for Fig-
ures 86..91), (i) impulse response h[n], (ii) pole-zero plot, (iii) amplitude response |H(ejω)|,
x-axis (0 . . . π), (iv) phase response ∠H(ejω), x-axis (0 . . . π).

H2) When all zeros are outside the unit circle, the filter has maximum phase. The
filter is IIR, the two zeros are outside the unit circle. When plotting the amplitude
response, it can be noticed that the filter is lowpass (LP). The filter H2(z) is at least
maximum-phase.

Another example on a maximum-phase transfer function (Mitra 2Ed Sec. 4.7 / 3Ed
Sec. 7.2.3 ), whose all zeros lie outside the unit circle in Figure 87

H(z) =
1− 2.773z−1 + 3.108z−2 − 3.125z−3

1 + 1.559z−1 + 0.81z−2
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Figure 87: An example of a maximum-phase transfer function in Problem 49.

y3) When all zeros are inside the unit circle, the filter has minimum phase. From the
difference equation we get

H3(z) =
1 + 1.2z−1 + 0.4z−2

1− 0.5z−1

The transfer function is similar to H2(z), but the zeros are now mirror-symmetric to
those. Therefore the amplitude response is the same, but the filter is minimum-phase
(Mitra 2Ed Sec. 4.7 / 3Ed Sec. 7.2.3 ).

Another example on a minimum-phase transfer function whose all zeros lie inside
the unit circle in Figure 88

H(z) =
1− 0.9944z−1 + 0.8872z−2 − 0.32z−3

1 + 1.559z−1 + 0.81z−2

A minimum-phase transfer function can be converted to a maximum-phase transfer
function (or vice versa) by mirroring the zeros respect to the unit circle. This can
be done using an appropriate allpass function.
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Figure 88: An example of a minimum-phase transfer function in Problem 49.

H4) If the amplitude response (z ← ejω) is |H(ejω)| = 1 for all frequencies, then the
filter is allpass (Mitra 2Ed Sec. 4.6 / 3Ed Sec. 7.1.3 ). The phase response differs
from filter to filter. Allpass-filters contain both zeros and poles mirror-symmetrically,
and there is a certain symmetry in the coefficients of numerator and denominator
polynomials, too. Note that gain cannot be seen from the pole-zero plot.

In Figure 89 an allpass transfer function

H(z) = −3.4722 · −0.288 + 0.4785z−1 − 0.007771z−2 − 0.09443z−3 + z−4

1− 0.09443z−1 − 0.007771z−2 + 0.4785z−3 − 0.288z−4
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Figure 89: An example of an allpass transfer function in Problem 49.

Remark. A complemantary transfer function (Mitra 2Ed Sec. 4.8 / 3Ed Sec. 7.5 )
can be obtained using allpass filters. An example of a lowpass filter

HLP (z) = 0.5
(
A0(z) + A1(z)

)

= 0.5
(

1 +
−a + z−1

1− az−1

)

= 0.5
(1− a + z−1 − az−1

1− az−1

)

where A0(z) and A1(z) are allpass transfer functions and its power-complementary
highpass filter

HHP (z) = 0.5
(
A0(z)− A1(z)

)

= 0.5
(

1− −a + z−1

1− az−1

)

=
1 + a

2
· 1− z−1

1− az−1

In Figure 90(iii) is shown that |HLP (z)|2 + |HHP (z)|2 = 1, as expected by the defi-
nition of power-complementary transfer functions.
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Figure 90: An example of power-complementary LP and HP filters in Problem 49.

H5) Linear-phase. This impulse response is a shifted (delayed) version of h1[n]. The
frequency response is not any more real-valued, but still the phase response is linear
and the group delay constant.

H5(e
jω) = e−jω ·H1(e

jω)

|H5(e
jω)| = |H1(e

jω)| = |2− 2 cos(ω)|
∠H5(e

jω) = −ω | linear

− d

dω
∠H5(e

jω) = 1 | constant

There are four types of linear-phase transfer functions (Mitra 2Ed Sec. 4.4.3 / 3Ed
Sec. 7.3 ). Impulse response of Type 1 is symmetric and odd-length. Type 2 is
symmetric and even-length. Type 3 is antisymmetric and odd-length. Type 4 is
antisymmetric and even-length. The zeros have mirror-image symmetry respect to
the unit circle.

In Figure 91 there is a Type 1 (length: 9, order: 8) impulse response, which is a
shifted version of the filter in Figure 86.

h[n] = {1, 3.2893, 3.8875, 0.0884,−3.0407, 0.0884, 3.8875, 3.2893, 1}
H(z) =

∑

n

h[n]z−n
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Figure 91: An example of a linear-phase transfer function in Problem 49.
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50. Problem: Consider a stable and causal discrete-time LTI system S1, whose zeros are
z1 = 1 and z2 = 1, and poles p1 = 0.18 and p2 = 0. Add a LTI FIR filter S2 in parallel
with S1 as shown in Figure 92 so that the whole system S is causal second-order bandstop
filter, whose minimum is approximately at ω ≈ π/2 and whose maximum is scaled to one.
What are transfer functions S2 and S? Show clear intermediate steps.

S1

S2

y[n]x[n] K

Figure 92: Problem 50: Filter S constructed from LTI subsystems S1 and S2.

Solution: Denote transfer functions of the system S1 by H1(z) = B1(z)/A1(z), S2 by
H2(z) = B2(z)/A2(z), and the total system S by H(z) = K · B(z)/A(z). The system S2

is FIR, so A2(z) = 1, and therefore H2(z) = B2(z). The subsystems are parallel which
gives

H(z) = K ·
(

H1(z) + H2(z)
)

= K ·
(B1(z)

A1(z)
+ B2(z)

)

= K · B(z)

A(z)

The system S1 is clearly a high-pass filter, see Figure 93(a),(b),

H1(z) =
(1− z1z

−1) · (1− z2z
−1)

1− p1z−1
=

(1− z−1) · (1− z−1)

1− 0.18z−1
=

1− 2z−1 + z−2

1− 0.18z−1

We would like to have a bandstop filter H(z) whose minimum is approximately at ωm =
π/2. Zeros do not necessarily need to lie on the unit circle, but with the angle ωm and
−ωm, see Figure 93(c),(d). The numerator polynomial of H(z), i.e., B(z) is of form

B(z) = (1− rjz−1) · (1 + rjz−1) = 1 + r2z−2
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Figure 93: Problem 50: (a),(b) Known H1(z), (c),(d) B(z) of the whole system.

Next we will compute two different solutions for bandstop filters. In the first case, zeros
lie inside the unit circle (r < 1), and in the second case they are on the unit circle (r = 1).

Adding H1(z) and H2(z) results to (H ′(z) is H(z) without scaling factor K)

H ′(z) =
B1(z)

A1(z)
+ B2(z)

=
B1(z)

A1(z)
+

A1(z) ·B2(z)

A1(z)

=
(1− 2z−1 + z−2) + (1− 0.18z−1) · B2(z)

1− 0.18z−1
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It can be seen that the order of B2(z) cannot be more than 1 because B(z) has to be
second-order at most. We can write B2(z) = a + bz−1, and

H ′(z) =
(1− 2z−1 + z−2) + (1− 0.18z−1) · (a + bz−1)

1− 0.18z−1

=
(1 + a) + (−2− 0.18a + b)z−1 + (1− 0.18b)z−2

1− 0.18z−1

Now we can simply choose a = 0 and b = 2, i.e., B2(z) = 2z−1, in order to get a required
form of B(z) = 1 + 0.64z−2. In this case zeros are at z1 = 0.8j and z2 = −0.8j. The
pole-zero pole and the (scaled) magnitude response of

H ′(z) =
1 + 0.64z−2

1− 0.18z−1

are given in Figure 94(a),(b).

The only pole lies at p1 = 0.18, which is closer to 1 than −1, and the maximum is therefore
at ω = 0 (z = 1). The scaling constant K:

|H(z = 1)| = K · |1 + 0.64|
|1− 0.18| = 2K = 1

which gives K = 0.5 and the final results:

H2(z) = 2z−1

H(z) = 0.5 · 1 + 0.64z−2

1− 0.18z−1

Another solution is to compute other values for a and b. By demanding B(z = j) = 0
and B(z = −j) = 0, i.e., zeros on the unit circle, we get the following two equations with
two unknowns. Note that (1/j) = −j.

B(z = j) = (1 + a) + (−2− 0.18a + b)(−j) + (1− 0.18b)(−1) = 0

B(z = −j) = (1 + a) + (−2− 0.18a + b)(j) + (1− 0.18b)(−1) = 0

1 + a− 1 + 0.18b = 0 | real part

−2− 0.18a + b = 0 | imaginary part

Computing the unknowns gives a ≈ −0.35 and b ≈ 1.94, leading to B2(z) = −0.35 +
1.94z−1 and

H ′(z) = 0.65 · 1 + z−2

1− 0.18z−1

whose pole-zero plot and (scaled) magnitude response are plotted in Figure 94(c),(d).

Now the scaling constant K is:

|H(z = 1)| = K · 0.65 · |1 + 1|
|1− 0.18| ≈ 1.59K = 1

which gives K = 0.63 and the final results:

H2(z) = −0.35 + 1.94z−1

H(z) = 0.41 · 1 + z−2

1− 0.18z−1
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Figure 94: Problem 50: (a),(b) H(z) of first solution, (c),(d) H(z) of second solution.

51. Problem: A second-order FIR filter H1(z) has zeros at z = 2±j. (a) Derive a minimum-
phase FIR filter with exactly same amplitude response. (b) Derive an inverse filter of that
minimum-phase FIR filter.

Solution: Minimum-phase filter has all zeros inside the unit circle whereas maximum-
phase filter has all zeros outside the unit circle. A filter with zeros inside and outside the
unit circle is often called a mixed-phase filter (Mitra 2Ed Sec. 4.7, p. 246 / 3Ed Sec.
7.2.3, p. 365 ).

Two causal LTI discrete-time systems with impulse responses h1[n] and h2[n] are inverses
if h1[n] ⊛ h2[n] = δ[n]. After z-transform H1(z) · H2(z) = 1, or H1(z) = 1/H2(z). If
H1(z) = B(z)/A(z), then H2(z) = A(z)/B(z), that is, all zeros are replaced by poles,
and vice versa. If the filter is minimum-phase FIR with all zeros inside the unit circle,
then its inverse is stable. Inverse filtering can be used, e.g., in recovering a signal which
has been distorted in an imperfect transmission channel (Mitra 2Ed Sec. 4.9, p. 253 /
3Ed Sec. 7.6, p. 396 ). In the case of non-minimum-phase FIR filter the situation is more
complex (Mitra 2Ed Sec. -, p. - / 3Ed Sec. 7.6.2, p. 398 ).

a) Now a second-order FIR filter H1(z) has zeros at z = 2± j

H1(z) = (1− (2 + j)z−1) · (1 + (2− j)z−1) = 1− 4z−1 + 5z−2

which is a high-pass filter. Consider an allpass filter

A(z) =
5− 4z−1 + z−2

1− 4z−1 + 5z−2
ROC: |z| <

√
5

which has poles at p = 2 ± j and zeros at z = 0.4 ± 0.2j, and |A(z)| ≡ 1 for all
frequencies. Poles and zeros are mirror-images, pi = rej±θ, zi = (1/r)ej±θ, e.g.,

1

2 + j
=

2− j

(2 + j)(2− j)
=

2− j

4 + 2j − 2j + 1
= 0.4− 0.2j

Now, the minimum-phase FIR filter H2(z) with exactly the same amplitude response
as H1(z) is received by H2(z) = H1(z) · A(z)

H2(z) = (1− 4z−1 + 5z−2) · 5− 4z−1 + z−2

1− 4z−1 + 5z−2
= 5− 4z−1 + z−2

H2(z) has two zeros at z = 0.4± 0.2j.

b) The inverse filter is now received directly H3(z) = 1/H2(z)

H3(z) =
1

5− 4z−1 + z−2
=

0.2

1− 0.8z−1 + 0.2z−2
ROC: |z| >

√
0.2

H3(z) is a stable lowpass all-pole filter with poles at p = 0.4± 0.2j.
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52. Problem: Derive the transfer function of the feedback system shown in Figure 95.

E(z)
w[n] y[n]x[n]

F(z)

G(z)

Figure 95: System in Problem 52.

Solution: Systems in parallel, see Figure 96: Hp(z) = H1(z) + H2(z) in frequency
domain and hp[n] = h1[n] + h2[n] in time domain. Systems in cascade, see Figure 97:

H1(z)

H2(z)

Figure 96: Systems in parallel, example in Problem 52.

Hc(z) = H1(z)H2(z) in frequency domain and hc[n] = h1[n] ⊛ h2[n] in time domain.
The flow diagram of the system being investigated with temporary variable w[n] is in

H2(z)H1(z)

Figure 97: Systems in cascade, example in Problem 52.

Figure 98. We get the following equations:

{
Y (z) = F (z)W (z)
W (z) = E(z)X(z) + G(z)Y (z)

Y (z) = F (z) (E(z)X(z) + G(z)Y (z))

Y (z) (1− F (z)G(z)) = (F (z)E(z)) X(z)

H(z) =
Y (z)

X(z)
=

F (z)E(z)

1− F (z)G(z)

E(z)
X(z)

F(z)

G(z)

Y(z)Y(z)

G(z)Y(z)

W(z)

Y(z)

E(z)X(z)

Figure 98: System in Problem 52.
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53. Problem: Develop a polyphase realization of a length-9 FIR transfer function given by

H(z) =
8∑

n=0

h[n]z−n

with (a) 2 branches and (b) 4 branches.

Solution: Polyphase realizations (Mitra 2Ed Sec. 6.3.3 / 3Ed Sec. 8.3.3 ) can be used
in multirate techniques.

a) Two branches

H(z) =

8∑

n=0

h[n]z−n

= h[0] + h[1]z−1 + h[2]z−2 + h[3]z−3 + h[4]z−4 +

h[5]z−5 + h[6]z−6 + h[7]z−7 + h[8]z−8

=
(
h[0] + h[2]z−2 + h[4]z−4 + h[6]z−6 + h[8]z−8

)
+

z−1
(
h[1] + h[3]z−2 + h[5]z−4 + h[7]z−6

)

= H0(z
2) + z−1H1(z

2)

where

H0(z) = h[0] + h[2]z−1 + h[4]z−2 + h[6]z−3 + h[8]z−4

H1(z) = h[1] + h[3]z−1 + h[5]z−2 + h[7]z−3

H0(z2)

H1(z2)

z−1

Figure 99: Polyphase realization with two branches in Problem 53(a).

b) Four branches

H(z) =
8∑

n=0

h[n]z−n

= h[0] + h[1]z−1 + h[2]z−2 + h[3]z−3 + h[4]z−4 +

h[5]z−5 + h[6]z−6 + h[7]z−7 + h[8]z−8

=
(
h[0] + h[4]z−4 + h[8]z−8

)
+ z−1

(
h[1] + h[5]z−4

)
+

z−2
(
h[2] + h[6]z−4

)
+ z−3

(
h[3] + h[7]z−4

)

= H0(z
4) + z−1H1(z

4) + z−2H2(z
4) + z−3H3(z

4)
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where

H0(z) = h[0] + h[4]z−1 + h[8]z−2

H1(z) = h[1] + h[5]z−1

H2(z) = h[2] + h[6]z−1

H3(z) = h[3] + h[7]z−1

H0(z4)

H2(z4)

H3(z4)

H1(z4)

z−1

z−1

z−1

Figure 100: Polyphase realization with four branches in Problem 53(b).
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54. Problem: Analyze the digital filter structure shown in Figure 101 and determine its
transfer function H(z) = Y (z)/X(z).

a) Is the system LTI?

b) Is the structure canonic with respect to delays?

c) Compute H(z)H(z−1) (the squared amplitude response). What is the type of this
filter (lowpass/highpass/bandpass/bandstop/allpass)?

Solution: Let us use three temporary signals w1[n], w2[n], and w3[n], in the following
locations in Figure 101.

z−1 z−1

z−1 z−1

y[n]x[n]

K

A B

−1

−1

W

W1 W2

3

Figure 101: The filter with temporary signals w1, w2, and w3 in Problem 54.

From the figure we get the following expressions in transform-domain (W ≡W (z)):

W1 = KX + z−1W3

W2 = (z−1 −A)W1

W3 = AW1 − Bz−1W1 = (A− Bz−1)W1

Y = z−1W2 + BW1

Substituting the equation from third line to first line we get

W1 = KX + z−1(A− Bz−1)W1

(1− Az−1 + Bz−2)W1 = KX

Next, substituting second line in fourth line we get

Y = [z−1(z−1 −A) + B]W1

Finally, we get rid of the last temporary variable W1, and get

H(z) =
Y (z)

X(z)
= K · B − Az−1 + z−2

1−Az−1 + Bz−2

a) It is LTI. There are only multiplications by constants, delays, and sums of sequences.
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b) Since the structure employs 4 unit delays to implement a second-order transfer func-
tion, it is not canonic.

Canonic structure: the number of registers, i.e. delay components, is the same
as the filter order. Direct form I is not canonic, but it is intuitive and its difference
equation is easy to obtain. Direct form II is canonic. It is more efficient to use
canonic structures. (Consider, for example, Problem 62. If canonic structure is
used, there are only 8 storage locations instead of 10.)

c)

H(z)H(z−1) = K2

(
B − Az−1 + z−2

1−Az−1 + Bz−2

)(
B −Az1 + z2

1−Az1 + Bz2

)

| · z
−2

z−2

= K2

(
B − Az−1 + z−2

1−Az−1 + Bz−2

)(
Bz−2 − Az−1 + 1

z−2 −Az−1 + B

)

= K2

Therefore |H(ejω)| = K for all values of ω and hence |H(ejω)| = 1 if K = 1. H(z) is
an allpass transfer if K = 1.
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55. Problem: The filter in Figure 102 is in canonic direct form II (DF II). Draw it in DF I.
What is the transfer function H(z)?

Solution: Direct form structure means that the coefficients of the block diagram are the
same (or negative values) as in the difference equation and transfer function. There are
also other structures, e.g. lattice. The transfer function for any direct form (I, II, and
transposes IT , IIT , respectively, see Page 111) is the same. Some differences (may) occur
when working with finite word length. There are also differences in computational load
and memory storage.

a) The block diagram in Figure 102 is in canonic direct form II.

z

z

w[n] y[n]x[n]

0.8

−1

−1

−0.2

0.9

Figure 102: The block diagram of direct form II in Problem 55.

If we want to convert it into direct form I without any calculations (done below
in (b)), we can duplicate the registers. The same signal w[n] goes into the both
branches. See Figure 103(a).

Then we can denote the part in left as an “IIR subsystem” and the structure in right
as an “FIR subsystem”. Because both of them are LTI, we can change the order of
them, as in any LTI system, for example, using impulse responses

h[n] = hIIR[n] ⊛ hFIR[n] ≡ hFIR[n] ⊛ hIIR[n]

Now we have direct form I in Figure 103(b), and the difference equation and the
transfer function can be obtained directly without any temporal variables! However,
there are now three registers instead of two.

z−1

w[n] w[n]

"FIR""IIR"

0.8

−0.2

0.9

x[n] w[n] y[n]

z−1 z−1

(a)

0.8

"IIR""FIR"

y[n]

0.9

x[n]

z−1

−0.2

z−1z−1

(b)

Figure 103: From direct form II to direct form I in Problem 55(a).

b) The transfer function and difference equation can be derived directly from the filter
in Figure 102:

y[n] = w[n] + 0.8w[n− 1]

w[n] = x[n] + 0.9w[n− 1]− 0.2w[n− 2]
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Using z-transform

Y (z) = W (z) + 0.8z−1W (z) = W (z)(1 + 0.8z−1)

W (z) = X(z) + 0.9z−1W (z)− 0.2z−2W (z)

From the latter one, W (z) = X(z)/(1 − 0.9z−1 + 0.2−2), and substituting into the
first one, we get

Y (z) = X(z)
1 + 0.8z−1

1− 0.9z−1 + 0.2−2

H(z) = Y (z)/X(z) =
1 + 0.8z−1

1− 0.9z−1 + 0.2−2

Using inverse z-transform we get difference equation which can be easily drawn as
direct form I block diagram:

Y (z)/X(z) =
1 + 0.8z−1

1− 0.9z−1 + 0.2−2

Y (z)(1− 0.9z−1 + 0.2−2) = X(z)(1 + 0.8z−1)

y[n]− 0.9y[n− 1] + 0.2y[n− 2] = x[n] + 0.8x[n− 1]

Remark. Direct Forms.

(Mitra 2Ed Sec. 6.4.1 / 3Ed Sec. 8.4.1 ) Direct form: coefficients of difference equation
or transfer function can be found in block diagram. (This is not the case, for example, in
lattice form.) Common in all forms is that they have the same transfer function, but the
“implementation” is different.

Let the transfer function be

H(z) =
Y (z)

X(z)
=

1 + 0.5z−1

1− 0.2z−1 + 0.4z−2

In the top numerator polynomial 1 + 0.5z−1 refers to “FIR part” P (z) and in the bottom
denominator polynomial 1− 0.2z−1 + 0.4z−2 “IIR part” D(z):

H(z) = P (z)
1

D(z)

How to get difference equation and block diagram from tranfer function,
z-transform ax[n− n0]↔ a z−n0 X(ejω):

H(z) =
Y (z)

X(z)
=

1 + 0.5z−1

1− 0.2z−1 + 0.4z−2

Y (z) =
X(z)[1 + 0.5z−1]

1− 0.2z−1 + 0.4z−2

Y (z)[1− 0.2z−1 + 0.4z−2] = X(z)[1 + 0.5z−1]

Y (z)− 0.2z−1Y (z) + 0.4z−2Y (z) = X(z) + 0.5z−1X(z)

y[n]− 0.2y[n− 1] + 0.4y[n− 2] = x[n] + 0.5x[n− 1]

y[n] = 0.2y[n− 1]− 0.4y[n− 2] + x[n] + 0.5x[n− 1]

Direct form I can be drawn directly H(z) = P (z) · 1
D(z)

, first “FIR” and then “IIR”

(Figure 104).
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−0.4

0.2

"IIR""FIR"

0.5

x[n] y[n]1

−1

z
−1

z
−1

z

Figure 104: Direct form I. You may connect FIR and IIR parts in the middle sum line.

When transposing (Figure 105) transfer function stays, but structure changes. “Rules”
for transposing:

1 Change directions
2 Nodes to sums
3 Sums to nodes
4 Flip the whole structure

−0.4

0.2

"IIR""FIR"

x[n]

0.5

1
y[n]

−1

z
−1

zz
−1

Phases 1-3

"FIR""IIR"

w[n] w[n]

w[n]
y[n]

0.5

1

-0.4

0.2

x[n]

-1
z

-1
z

-1
z

Phase 4: flip around. You may connect
parts in the middle line.

Figure 105: Transposed direct form I.

Direct form II contains minimum number of delay registers. Draw in order “IIR” and
then “FIR”. Think the transfer function in order H(z) = 1

D(z)
· P (z). Because LTI, the

order of subfilters can be changed. Connect the delay registers, because there are the
same signals (see Book). So you get canonic form, where the number of delays is the
same as order of the filter (Figure 106).

Corresponding transponing IIT , see Figure 107.

Example on direct form, cascade and parallel system. Consider a second order transfer
function

H(z) =
1

(1 + 1
3
z−1)(1− 1

4
z−1)

=
1

1 + 1
12

z−1 − 1
12

z−2

with difference equation

y[n] = − 1

12
y[n− 1] +

1

12
y[n− 2] + x[n]

Cascade form can be written as

H(z) =

(
1

1 + 1
3
z−1

)(
1

1− 1
4
z−1

)
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w[n]

y[n]x[n] w[n]

w[n]

"FIR"

−0.4

0.2

1

0.5

"IIR"

z
−1

z
−1

z
−1

IIR-FIR before connecting

"FIR"

y[n]

0.5

1w[n]

-0.4

0.2

"IIR"

x[n]

z
-1

z
-1

Canonic form

Figure 106: Direct form II.

y[n] "IIR"

"FIR"

1 x[n]

0.2

-0.4

0.5

z

-1
z

-1

Phases 1-3

x[n]

"FIR"

"IIR" y[n]

0.2

−0.4

0.5

1

z

−1
z

−1

Phase 4: flip around

Figure 107: Transposed direct form II.

and parallel form using partial fraction (draw!)

H(z) =
4
7

1 + 1
3
z−1

+
3
7

1− 1
4
z−1
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56. Problem: Develop a canonic direct form realization of the transfer function

H(z) =
2 + 4z−1 − 7z−2 + 3z−5

1 + 2z−1 + 5z−3

and then determine its transpose configuration.

Solution: There is a canonic direct form II realization of H(z) in Figure 108. Its
transposed realization can be achieved

• by changing the direction of the flow to opposite,

• by replacing each sum node with a branch node, and

• by replacing each branch node with a sum node

2

4

-7

3

-2

-5

z−1z−1z−1 z−1 z−1

Figure 108: Canonic direct form II in Problem 56.

The end result is in Figure 109.

2

4

-7

3

-2

-5

z−1z−1 z−1z−1z−1

Figure 109: Transposed canonic direct form II in Problem 56.
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57. Problem: Consider the following digital lowpass filter of type Chebyshev II:

H(z) = K · 0.71− 0.36z−1 − 0.36z−2 + 0.71z−3

1− 2.11z−1 + 1.58z−2 − 0.40z−3

Normalize the maximum of the amplitude response to the unity (0 dB).

Solution: Chebyshev II approximation is monotonic in the passband, see Figure 110.

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

H(z) = K ⋅ B(z) / A(z)

Figure 110: Problem 57, H(z) = K · B(z)/A(z) without magnitude scaling.

Therefore the maximum value of the amplitude response of the lowpass Chebyshev II
filter is at ω = 0. The gain K can be computed also in z-plane using z = ejω|ω=0 = 1.

|H(z)| =
∣
∣
∣K

0.71− 0.36z−1 − 0.36z−2 + 0.71z−3

1− 2.11z−1 + 1.58z−2 − 0.40z−3

∣
∣
∣

|H(z)|z=1 =
∣
∣
∣K

0.71− 0.36z−1 − 0.36z−2 + 0.71z−3

1− 2.11z−1 + 1.58z−2 − 0.40z−3

∣
∣
∣ = 1

= K
0.70

0.07
= 1

⇒ K = 0.1

Remark. When |H(z)|max = 1, then the maximum reference level is in (power) desibels
|H(z)|max = 20 log10(1) = 0 dB.
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58. Problem: Sketch the following specifications of a digital filter on paper. Which of the
amplitude responses of the realizations in Figure 111 do fulfill the specifications?

Specifications: Digital lowpass filter, sampling frequency fT 8000 Hz, passband edge fre-
quency fp 1000 Hz, transition band 500 Hz (transition band is the band between passband
and stopband edge frequencies!), maximum passband attenuation 3 dB, minimum stop-
band attenuation 40 dB.

Solution: The frequency specifications are in Hertz, radians, and in normalized Matlab
frequency in Table 8 and they are drawn in Figure 111 with dashed line.

sampling frequency fT 8000 Hz ωT 2π (rad) 2
passband edge fp 1000 Hz ωp π/4 (rad) Wp 2 · 1000/8000 = 0.25
stopband edge fs 1500 Hz ωs 3π/8 (rad) Ws 2 · 1500/8000 = 0.375
passband ripple Rp 3 dB Rp 3
stopband attenuation Rs 40 dB Rs 40

Table 8: Specifications for the filter in Problem 58.

Now that specifications are written and sketched, the filter order and the filter coefficients
are computed using a specific software (e.g. Matlab, ellipord and ellip, buttord and
butter, etc.). Then the amplitude response |H(ejω)| of the calculated filter is plot-
ted in the same picture as the sketch of the specifications (e.g. Matlab, [...] =

freqz(B,A,...);). If the amplitude response curve fits in the specifications, we have
succeeded. In other case, the specifications and the code for the filter are re-checked.

The elliptic IIR filter in Figure 111(a) (via bilinear transform) is of order 4 and it fulfills
the specifications exactly.

Chebychev II filter (Figure 111(b)), which is 10th order IIR, is monotonic in passband
and has stopband attenuation of 50 dB instead of 40. The amplitude response fits in the
allowed area, and it is already too strict. Probably the order N = 8 would be sufficient.

The third filter (Figure 111(c)) is 50th order FIR, whose transition is narrow enough
but at the wrong cut-off frequency. So, this is the only filter, which does not fulfill the
specifications. One should check the cut-off frequency so that the amplitude response fits.
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(a) Elliptic, N=4

Ampl.resp.
Specifications

0 2000 4000
−70

−60

−50
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−30

−20

−10
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(b) Chebychev II, N=10

Ampl.resp.
Specifications

0
−70

−60

−50

−40

−30

−20

−10

0

ω

dB

π/2 π

(c) FIR/Hamming, N=50

Ampl.resp.
Specifications

Figure 111: Three realizations in Problem 58: amplitude responses (solid line) with specifica-
tions (dashed line) of (a) 4th order elliptic (OK!), (b) 10th order Chebychev II (OK, too tight
realization?), (c) 50th order FIR using Hamming window (bad cut-off frequency).
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59. Problem: Connect first each amplitude response to the corresponding pole-zero plot
in Figure 112. Then recognize the following digital IIR filter algoritms: Butterworth,
Chebyshev I, Chebyshev II, Elliptic. The conversion from analog to digital form is done
using bilinear transform.

Solution: Analog filter design is represented in (Mitra 2Ed Sec. 5.4 / 3Ed Sec. 4.4 ).
The approximations are given with magnitude-squared responses of Nth order in Table 9.

Approximation M 2Ed Sec. M 3Ed Sec. Response

Butterworth 5.4.2 4.4.2 |Ha(jΩ)|2 =
1

1+(Ω/Ωc)2N

Chebyshev I 5.4.3 4.4.3 |Ha(jΩ)|2 =
1

1+ǫ2T 2
N (Ω/Ωp)

Chebyshev II 5.4.3 4.4.3 |Ha(jΩ)|2 =
1

1+ǫ2[
TN (Ωs/Ωp)
TN (Ωs/Ω)

]2

Elliptic 5.4.4 4.4.4 |Ha(jΩ)|2 =
1

1+ǫ2R2
N (Ω/Ωp)

Table 9: Analog filter approximations in Problem 59.

The response of Butterworth is monotonic. Chebyshev I is equiripple in the passband
and monotonic in the stopband whereas Chebyshev II is monotonic in the passband and
equiripple in the stopband. Elliptic approximation is equiripple both in the passband
and stopband. The filter order can often be obtained by computing the number of local
maximum and minimum.

The digital filters are obtained through bilinear transform (Mitra 2Ed Sec. 7.2 / 3Ed Sec.
9.2 ). Hence, approximations, amplitude responses and pole-zero plots are related to each
other according to the Figure 112.
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Figure 112: Problem 59, see the titles of each subfigure for filter type and order.
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60. Problem: Consider the following prototype analog Butterworth-type lowpass filter

HprotoLP (s) =
1

s + 1

a) Form an analog first-order lowpass filter with cutoff frequency Ωc by substituting
H(s) = HprotoLP ( s

Ωc
). Draw the pole-zero plot in s-plane.

b) Implement a discrete first-order lowpass filter HImp(z), whose cutoff frequency (-3
dB) is at fc = 100 Hz and sampling rate is fs = 1000 Hz, applying the impulse-
invariant method to H(s). Draw the pole-zero plot of the filter HImp(z).

c) Implement a discrete first-order lowpass filter HBil(z) with the same specifications
applying the bilinear transform to H(s). Prewarp the edge frequency. Draw the
pole-zero plot of the filter HBil(z).

Solution: The solution to the problem starts from the page 119. Two methods for
digital IIR design are shown in the lecture slides, impulse invariant method and bilinear
transform method.

Analog Butterworth lowpass filter

Analog Butterworth filter is discussed in (Mitra 2Ed Sec. 5.4.2 / 3Ed Sec. 4.4.2 ).
The definition of an analog Butterworth filter with cut-off frequency Ωc is |Ha(jΩ)|2 =
1/(1 + ( Ω

Ωc
)2N) (Mitra 2Ed Eq. 5.31 / 3Ed Eq. 4.33 ). The first order (N = 1) filter is

therefore

|Ha(jΩ)|2 =
1

1 +
(

Ω
Ωc

)2

Ha(s)Ha(−s) =
1

1 +
(

s
jΩc

)2 =
1

1−
(

s
Ωc

)2

=

=H(s)
︷ ︸︸ ︷

1

1 +
(

s
Ωc

) ·

H(−s)
︷ ︸︸ ︷

1

1 +
(

−s
Ωc

)

where s = jΩ

⇒ Ha(s) =
Ωc

s + Ωc

The pole in s-plane is at s = −Ωc.

Here, Ω refers to frequency in analog domain (H(jΩ)) and ω to frequency in digital
domain (H(ejω)).

As said earlier, there are two ways to convert analog filter to digital. The inpulse-invariant
method is straigtforward but it has severe limitations. The bilinear transform is a standard
way.

Impulse-invariant method, see, e.g. lecture slides:

Ha(s) 7→ ha(t) 7→ h[n] = ha(nT ) 7→ H(z)

In the impulse-invariant method the target is to get impulse response of digital filter h[n]
to be the same as the sampled impulse response of analog filter ha(nT ). Because IIR
filters have normally an impulse response of infinite length, this method brings distortion.
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The bilinear transformation is acquired when

s = k · 1− z−1

1 + z−1

is inserted into the system function (Mitra 2Ed Eq. 7.21 / 3Ed Eq. 9.15 )

H(z) = Ha(s)|s=k· 1−z−1

1+z−1

Note that here k is a parameter used in the derivation of the bilinear transformation. It
is originally k = (2/T ) but can be set k = 1 to simplify the procedure.

The frequency is warped before the bilinear transformation (Mitra 2Ed Fig. 7.4, 7.5 /
3Ed Fig. 9.3, 9.4 ). In the small frequencies the difference is not big, but it is significant
in high frequencies. Therefore the discrete-time normalized angular cut-off frequency ωc

has to be first prewarped into analog-time prewarped cut-off frequency Ωpc:

Ωpc = k · tan
(ωc

2

)

where ωc = 2πfc/fT = 2πfcT = ΩcT , and 0 < ωc < π, and [fc] = Hz, and fT = 1/T
is the sampling frequency. For example, if discrete-time fc = 100 Hz and fs = 1000 Hz,
then Ωpc = 2000 · tan(0.1π), and fpc ≈ 103.4 Hz. Analog design has to be done using fpc

instead of fc in order to get the cut-off frequency to 100 Hz in the digital filter.

Solution to Problem 60

a) Substitution gives directly

H(s) = HprotoLP (s/Ωc) =
Ωc

s + Ωc

The pole-zero plot of a lowpass filter in s-plane is in Figure 113.

Ω
c

Im s

Re s

Analog LP filter H
a
(s)=Ω

c
/(s+Ω

c
)

Figure 113: Problem 60(a), LP in s-plane. The stable pole is at s = −Ωc in the left subspace,
the y-axis is the frequency.

b) Transfer function using the impulse-invariant method.

Ha(s) =
Ωc

s + Ωc
7→ ha(t) = Ωce

−Ωctµ(t) 7→

h[n] = ha(nT ) = Ωce
−ΩcnT µ[n] 7→ H(z) = Ωc

∞∑

n=0

e−ΩcnTz−n =
Ωc

1− e−ΩcT z−1
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The constant K is introduced in order to scale the maximum of |H(ejω)| into unity.
Using (Mitra 2Ed Eq. 7.7 / 3Ed Eq. 9.7 ), ωc = Ωc/fT = 2πfc/fT and values fT = 1
kHz (sampling frequency) and fc = 100 Hz (cut-off frequency),

H(z)Imp =
K

1− e−ωcz−1
=

K

1− e−π/5z−1

We also know that the maximum is located at zero frequency, because the frequency
response of a Butterworth filter is monotonic. Thus we get

K

1− e−π/5
= 1⇔ K = 1− e−π/5

The transfer function of the filter is therefore

H(z)Imp =
1− e−π/5

1− e−π/5z−1
= 0.4665 · 1

1− 0.5335z−1

There is a pole at z = 0.5335, see Figure 114 for the amplitude response in linear
scale, in desibels and the pole-zero plot.
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Figure 114: Problem 60, the filter HImp(z) using impulse-invariant method. (a) Amplitude
response in linear scale |H(ejω)| and (b) in desibels 10 · log10 |H(ejω)|2, (c) pole-zero diagram.

c) Transfer function using bilinear transform. Compute the normalized angular discrete-
time cut-off frequency ωc,

ωc =
2πΩc

Ωs
=

2π2πfc

2πfT
=

2πfc

fT
= 0.2π

and the prewarped cut-off frequency Ωpc (k = 2/T ):

Ωpc = k · tan(
ωc

2
) = k · tan(0.1π)

The digital filter is obtained through bilinear transform:

H(z) = H(s)|
s=k· 1−z−1

1+z−1 , Ωc=Ωpc=k·tan(0.1π)

=
Ωc

s + Ωc
|
s=k· 1−z−1

1+z−1 , Ωc=Ωpc=k·tan(0.1π)

=
k · tan(0.1π)

k · 1−z−1

1+z−1 + k · tan(0.1π)
| 6 k

=
tan(0.1π)(1 + z−1)

(1 + tan(0.1π))− (1− tan(0.1π))z−1



T-61.3010 DSP 2007 (B+C) 121/152 SOLUTIONS

The last task is to normalize the transfer function. The constant term in denominator
polynomial should be scaled to 1, and the maximum value of the amplitude response
to 1. While this is a Butterworth lowpass filter, the maximum is reached at
ω = 0, i.e., z = ejω|ω=0 = 1.

|H(z)Bil|max =
∣
∣
∣K · 1 + z−1

1− 1−tan(0.1π)
1+tan(0.1π)

z−1

∣
∣
∣
z=1

= 1

Finally,

HBil(z) = 0.2452 · 1 + z−1

1− 0.5095z−1

There is a zero at z = −1 and a pole at z = 0.5095. See Figure 115 for the amplitude
response in linear scale, in (power) desibels (20*log10(A)=10*log10(A2)), and the
pole-zero plot. Compare also to the filter obtained through the impulse-invariant
method in Figure 114.
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Figure 115: Problem 60, the filter HBil(z) using bilinear transform. (a) Amplitude response in
linear scale and (b) in desibels, (c) pole-zero diagram.
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61. Problem: Use windowed Fourier series method and design a FIR-type (causal) lowpass
filter with cutoff frequency 3π/4. Let the order of the filter be 4.

a) Use the rectangular window of length 5.

b) Use the Hamming window of length 5.

c) Compare how the amplitude responses of the filters designed in (a) and (b) differ
assuming that the window size is high enough (e.g. M = 50).

Solution: Digital FIR filter design with windowed (truncated) Fourier series method.
The idea is to find infinite-length impulse response of the ideal filter and truncate it so
that a realizable finite-length filter is obtained.

ht[n] = hd[n] · w[n] ↔ Ht(z) = Hd(z) ⊛ W (z)

Now, when cut-off frequency (-3 dB) is at ωc = 3π/4, the infinite-length impulse response
of the ideal filter is:

hd[n] = sin(
3π

4
n)/(πn) = (3/4) sinc(

3

4
n)

When computing values, sin(x)/x → 1, when x → 0, or sinc(x) → 1, when x → 0. So,
we get hd[n] = {. . . ,−0.1592, 0.2251, 0.75, 0.2251,−0.1592, . . .}.

a) Now we are using rectangular window wr[n] of length 5 (4th order),

wr[n] =

{

1, −2 ≤ n ≤ 2

0, otherwise

Hence,

ht[n] = hd[n] · wr[n] = {−0.1592, 0.2251, 0.75, 0.2251,−0.1592}

If causal filter is needed, then the shift by two is needed
hc[n] = ht[n− 2] = {−0.1592, 0.2251, 0.75, 0.2251,−0.1592}.
In Figure 116 time-domain view:
(a) hd[n] (IIR), (b) wr[n], and (c) ht[n] = hd[n] · wr[n] (FIR).

In Figure 117 the corresponding frequency-domain view:
(a) Hd(e

jω) (ideal, desired), (b) Wr(e
jω), and (c) Ht(e

jω) = Hd(e
jω)⊛ Wr(e

jω) (real-
isable).
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Figure 116: Problem 61(a): time domain view, (a) hd[n], (b) wr[n],(c) ht[n].

T-61.3010 DSP 2007 (B+C) 123/152 SOLUTIONS

M
ag

ni
tu

de

1

π ω

(a)

0 0.2pi 0.4pi 0.6pi 0.8pi pi
0

1

2

3

4

5

W
r
(ejω)

(b)

0 0.2pi 0.4pi 0.6pi 0.8pi pi
0

0.2

0.4

0.6

0.8

1

H
t
(ejω) using rectangular window

(c)

Figure 117: Problem 61(a): frequency domain (0 . . . π), (a) Hd(e
jω), (b) Wr(e

jω), (c) Ht(e
jω).

b) Now we are using Hamming window2 wh[n] of length 5,

wh[n] =

{

0.54 + 0.46 cos(2πn/4), −2 ≤ n ≤ 2

0, otherwise

Hence,

ht[n] = hd[n] · wh[n] = hd[n] ·
(
0.54 + 0.46 cos(2πn/(2M))

)

= {0.08 · (−0.1592), 0.54 · 0.2251, 0.75, 0.54 · 0.2251, 0.08 · (−0.15592)}
= {−0.0127, 0.1215, 0.75, 0.1215,−0.0127}

If causal filter is needed, then
hc[n] = ht[n− 2] = {−0.0127, 0.1215, 0.75, 0.1215,−0.0127}
In Figure 118 time-domain view:
(a) hd[n], (b) wh[n], and (c) ht[n] = hd[n] · wh[n].

In Figure 119 the corresponding frequency-domain view:
(a) Hd(e

jω), (b) Wh(e
jω), and (c) Ht(e

jω) = Hd(e
jω) ⊛ Wh(e

jω).
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Figure 118: Problem 61(b): time domain view, (a) hd[n], (b) wh[n],(c) ht[n].

c) Some examples of window functions:

i) Rectangular N=11, Figure 120

ii) Rectangular N=65, Figure 121

iii) Hamming N=65, Figure 122

2The expression is slightly different from that given in (Mitra 2Ed Eq. 7.75, p. 452 / 3Ed Eq. 10.31, p.
533 ) but the same as in Matlab.
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Figure 119: Problem 61(b): frequency domain (0 . . . π), (a) Hd(e
jω), (b) Wh(e

jω), (c) Ht(e
jω).

There are three figures for each item. Top left figure is the window function in time
domain w[n]. The causal version can be obtained by shifting. Bottom left figure is
the window function in frequency domain W (ejω). The third figure in right is the
amplitude frequency of actual filter which is obtained via window function method.
The desired lowpass filter Hd(e

jω) is drawn in dashed line, the implemented filter
Ht(e

jω) = Hd(e
jω) ⊛ W (ejω) is solid line. The cut-off frequency is at 100 Hz, and

the sampling frequency is 1000 Hz.

Notice that

i) Rectangular N=11 gives insufficient result.

ii) Rectangular N=65 gives sharp transition band but oscillates (Gibbs phenomenon).

iii) Hamming N=65 is flat both in passband and stopband but the transition band
is not as tight as in (ii).
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Figure 120: Rectangular window N = 11, see the text in Problem 61(c).
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Figure 121: Rectangular window N = 65, see the text in Problem 61(c).
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Figure 122: Hamming window N = 65, see the text in Problem 61(c).

62. Problem: The following transfer functions H1(z) and H2(z) representing two different
filters meet (almost) identical amplitude response specifications

H1(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2

where b0 = 0.1022, b1 = −0.1549, b2 = 0.1022, a1 = −1.7616, and
a2 = 0.8314, and

H2(z) =
12∑

k=0

h[k]z−k

where h[0] = h[12] = −0.0068, h[1] = h[11] = 0.0730,
h[2] = h[10] = 0.0676, h[3] = h[9] = 0.0864, h[4] = h[8] = 0.1040,
h[5] = h[7] = 0.1158, h[6] = 0.1201.

For each filter,

a) state if it is a FIR or IIR filter, and what is the order

b) draw a block diagram and write down the difference equation

c) determine and comment on the computational and storage requirements

d) determine first values of h1[n]
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Solution: The transfer functions H1(z) and H2(z) have been designed using the same
amplitude specifications, see Figure 123.
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Figure 123: Amplitude responses of H1(z) and H2(z) in Problem 62.

a) H1(z) is IIR. There is a denominator polynomial.

H2(z) is FIR. There is only the nominator polynomial.

b) H1(z) is an IIR filter. In order to show the feedback in time domain one has to use
inverse z-transform:

H(z) =
Y (z)

X(z)
=

b0 + b1z
−1 + b2z

−1

1 + a1z−1 + a2z−1

Y (z)
(
1 + a1z

−1 + a2z
−1
)

= X(z)
(
b0 + b1z

−1 + b2z
−1
)

| Z−1{.}
y[n] + a1y[n− 1] + a2y[n− 2] = b0x[n] + b1x[n− 1] + b2x[n− 2]

From the difference equation the block diagram can be drawn (Figure 124). Note
that the same coefficients can be found also in the form of H1(z).

y[n]

b2

b1

−a2

−a1

b0x[n]

z−1

z−1 z−1

z−1

Figure 124: H1(z) as a block diagram in Problem 62.

The impulse response h[n] of FIR filter H2(z) is directly seen and its length is 13
(finite impulse response). The block diagram consists only of multipliers and delays
(Figure 125).

c) From examination of the two difference equations the computational and storage
requirements for both filters are summarized in Table 10.

It is evident that the IIR filter is more econimical in both computational and storage
requirements than the FIR filter. However, there are some tricks to improve FIR
filter structure, see e.g. (Mitra 2Ed Sec. 6.3.3, 6.3.4 / 3Ed Sec. 8.3.3, 8.3.4 )
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y[n]
h0 h1 h2 h12

x[n]
z−1−1z−1 z

Figure 125: H2(z) as a block diagram in Problem 62.

FIR IIR
Number of multiplications 13 5
Number of additions 12 4
Storage locations (coefficients and data) 26 10

Table 10: Computational and storage requirements of H1(z) and H2(z).

d) A simple way to determine the impulse response is to insert an impulse x[n] = δ[n]
into input and compute recursively with difference equation what comes out in y[n].
The registers are assumed to be zero in the initial moment. Another way to solve
first values of h1[n] is to apply long division. Unfortunately, both cases are heavy by
hands. Inverse z-transform can be used in order to receive exact h[n]. Using Matlab,

h1[n] = {0.1022, 0.0251, 0.0615, 0.0875, 0.1029, 0.1086, . . .}
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63. Problem: See the digital filter in Figure 126. Write down all equations for wi[n] and y[n].
Create an equivalent matrix representation y[n] = Fy[n] + Gy[n − 1] + x[n], verify the
computability condition, develop a computable set of time-domain equations, and draw
the precedence graph.

Solution: In this problem issues of computable set of time-domain equations are consid-
ered (Mitra 2Ed Sec. 8.1, p. 515 / 3Ed Sec. 11.1, p. 589 ). See the digital filter structure
in Figure 126.

Z−1

Z−1

Z−1

y[n]x[n]

5w2

2

−3

1

−2

w1

−1

w4

w3

Figure 126: Problem 63: Digital filter structure.

The difference equations for wi[n] and y[n] can be written as

w1[n] = x[n]− w3[n] + w2[n]

w2[n] = −15w1[n− 1]

w3[n] = −3w1[n− 1] + w4[n]

w4[n] = −2w3[n− 1]

y[n] = 2x[n]− 3w1[n]

Note that you cannot compute this ordered set of time-domain equatios in this order,
i.e., the set is noncomputable. For instance, in order to get the value of w1[n] one has
to compute w2[n] and w3[n] first. It is not directly seen either, if the structure contains
delay-free loops (like wu[n] = ax[n] + . . . + bwu[n]).

We start from forming a matrix representation for the above set of equations using

y[n] = Fy[n] + Gy[n− 1] + x[n]

where y[n] =
[
w1[n] w2[n] w3[n] w4[n] y[n]

]T
. F contains coefficients at the time

moment n, and G coefficients at the previous time n− 1. The matrix representation is









w1[n]
w2[n]
w3[n]
w4[n]
y[n]









=









0 1 −1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
−3 0 0 0 0

















w1[n]
w2[n]
w3[n]
w4[n]
y[n]









+









0 0 0 0 0
−15 0 0 0 0
−3 0 0 0 0
0 0 −2 0 0
0 0 0 0 0

















w1[n− 1]
w2[n− 1]
w3[n− 1]
w4[n− 1]
y[n− 1]









+









x[n]
0
0
0

2x[n]











T-61.3010 DSP 2007 (B+C) 129/152 SOLUTIONS

See the matrix F closer. If the diagonal element in F is nonzero, then the computation
of the present value wi[n] requires knowledge of itself (delay-free loop), which makes the
structure totally noncomputable.

Any nonzero element in the top triangular of F makes the ordered set of equation non-
computable. The task is to re-order the equations so that this triangular becomes zero.

A signal flow-graph representation of the filter structure is created in Figure 127. The
dependent and independent signal variables y[n] are represented as nodes. Note that here
all different coefficients have been replaced by a single constant C = 1 (omitted) because
we are not interested in exact values of variables.

w2 w3 w4 y[n]x[n] w1 D

D

D

Figure 127: Problem 63: Signal flow-graph representation of the digital filter structure of
Figure 126. All coefficients have been omitted. Delay registers are marked with D.

First, remove all delay branches and branches going out from the input node, see the
reduced signal-flow chart in Figure 128(a). Label all those nodes which have only outgoing
brances into a set {N1}. Second, remove all outgoing branches from nodes {N1}, see
Figure 128(b). Label all nodes which have only outgoing brances into a set {N2}. Repeat
until there is no nodes left. If the algorithm stops before, there is a delay-free loop and
the whole system is noncomputable. Here we get

{N1} = {w2, w4}
{N2} = {w3}
{N3} = {w1}
{N4} = {y}

The graph with branches and nodes shown in Figure 129 is called precedence graph
(Mitra 2Ed Sec. 8.1.2, p. 518 / 3Ed Sec. 11.1.2, p. 592 ). The computational order of
the variables inside the same set {Ni} can be chosen arbitrary.

w2 w3 w4 y[n]x[n] w1 w2 w3 w4 y[n]x[n] w1

Figure 128: Problem 63: (a) The reduced signal flow-graph obtained by removing outgoing
branches from the input and all delay branches. All nodes with only outgoing brances, w2 and
w4, belong to the set {N1}. (b) All outgoing branches from nodes in the set {N1} have been
removed. All nodes with only outgoing brances, w3, belong to the set {N2}.
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The computable ordered set of equations is

w2[n] = −15w1[n− 1]

w4[n] = −2w3[n− 1]

w3[n] = −3w1[n− 1] + w4[n]

w1[n] = x[n]− w3[n] + w2[n]

y[n] = 2x[n]− 3w1[n]

N2N1 N3 N4

w1[n] y[n]

w2[n]

w4[n] w3[n]

Figure 129: Problem 63: Presedence graph with node sets Ni. Coefficients have been omitted.
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64. Problem: Suppose that the calculation of FFT for a one second long sequence, sampled
with 44100 Hz, takes 0.1 seconds. Estimate the time needed to compute (a) DFT of a one
second long sequence, (b) FFT of a 3-minute sequence, (c) DFT of a 3-minute sequence.
The complexities of DFT and FFT can be approximated with O(N2) and O(N log2 N),
respectively.

Solution: Fast Fourier Transform (FFT) is a computationally effective algorithm for
calculating the Discrete Fourier Transform (DFT) of a sequence (Mitra 2Ed Sec. 8.3.2 /
3Ed Sec. 11.3.2 ).

The computational complexity of FFT is O(N log N) where N is the length of the se-
quence. The complexity of the basic algorithm for DFT is quadratic to the input length
i.e. O(N2).

Here, it is supposed that the calculation of FFT for a one second long sequence, sam-
pled with 44100 Hz, takes 0.1 seconds. Thus, the length of the sequence is N = 1 s ×
44100 Hz = 44100 samples and we can approximate the number of operations needed
for the calculation as N log2 N (using the base-2 logarithm). Since performing these
operations takes 0.1 seconds, we get the (average) execution time for a single operation:

t =
0.1s

44100 log2(44100)
≈ 147 ns

a) The time needed to compute DFT of a one second long sequence is estimated as the
number of operations needed times the execution time for a single operation:

N2t = 441002 × 147 ns ≈ 300 s ≈ 5 min

b) A 3-minute sequence, sampled with 44100 Hz, consists of N ′ = 180 s× 44100 Hz =
7938000 samples. Calculating FFT for N ′ takes approximately:

N ′ log2(N
′)t = 7938000 log2(7938000)× 147 ns ≈ 30 s

c) Calculating DFT for N ′ takes approximately:

(N ′)2t = 79380002 × 147 ns ≈ 9 · 106 s ≈ 100 d

It should be noted that these are only very crude approximations of the actual time it
takes to calculate the FFT and DFT algorithms with different sizes of input sequences.
The O(·) notation omits all additive constants and constant coefficients of the complexity
and concerns only the asymptotic behavior of complexity when N grows without limit.
In addition, the length of N is assumed to be a power of 2 in FFT algoritms.
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65. Problem: Using radix-2 DIT FFT algorithm with modified butterfly computational
module compute discrete Fourier transform for the sequence x[n] = {2, 3, 5,−1}.

Solution: Discrete Fourier transform (DFT)

X[k] =
N−1∑

n=0

x[n]W nk
N k = 0 . . .N − 1

where WN = e−j2π/N , can be computed efficiently using fast Fourier transform (FFT)
algorithms. Algorithms are based on “divide and rule” – decomposing the N -point DFT
computation into smaller ones, and taking advantage of the periodicity and symmetry
properties of W nk

N . The computational complexity of DFT is quadratic O(N2) whereas
that of FFT is O(N log2 N). The difference is remarkable with large N . N is required
to be power of two 2µ = N . In addition, the temporary results during the algorithm
can be saved in the same registers (in-place computation), which is desirable for memory
management. See the literature for more details about deriving FFT algorithms (Mitra
2Ed Sec. 8.3.2, p. 540 / 3Ed Sec. 11.3.2, p. 610 ).

Here we apply radix-2 DIT FFT algorithm to compute DFT of the sequence x[n] =
{2, 3, 5,−1}. DIT stands for decimation-in-time and radix-2 means that the decimation
factor is 2 at each step. Modified butterfly module is depicted in Figure 130 and with
equations (Mitra 2Ed Eq. 8.42a, 8.42c, p. 543 / 3Ed Eq. 11.45a, 11.45c, p. 614 )

Ψr+1[α] = Ψr[α] + W l
NΨr[β]

Ψr+1[β] = Ψr[α]−W l
NΨr[β]

where r is the level of computation r = 1 . . . µ, µ = log2 Nx[n], l = 0 . . . 2r−1 − 1, and
N = 2r = 21 . . . 2µ. The number of Ψr[m] is Nx[n], m = 0 . . .Nx[n] − 1.

Ψ [α]r

Ψ [β]r

Ψ   [α]r+1

Ψ   [β]r+1

−1WN

Figure 130: Problem 65: Modified butterfly module.

Here {Ψ1[m]} is the input sequence in the bit-reversed order to be transformed, that is,
a sample x[b1b0] appears in the location m = b0b1 as Ψ1[b0b1] (bits bi ∈ {0, 1}). Hence,
x[n] = {2, 3, 5,−1} in bit-reversed order gives the starting point

(index 00) Ψ1[0] = x[0] = 2 (index 00)

(index 01) Ψ1[1] = x[2] = 5 (index 10)

(index 10) Ψ1[2] = x[1] = 3 (index 01)

(index 11) Ψ1[3] = x[3] = −1 (index 11)

The flow-graph for the algorithm is depicted in Figure 131. Computing the layer r = 1
where W l

N = {W 0
2 } = {1}

Ψ2[0] = Ψ1[0] + W 0
2 Ψ1[1] = 2 + 5 = 7

Ψ2[1] = Ψ1[0]−W 0
2 Ψ1[1] = 2− 5 = −3

Ψ2[2] = Ψ1[2] + W 0
2 Ψ1[3] = 3− 1 = 2

Ψ2[3] = Ψ1[2]−W 0
2 Ψ1[3] = 3 + 1 = 4
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and the layer r = 2 with W l
N = {W 0

4 , W 1
4 } = {1,−j}

Ψ3[0] = Ψ2[0] + W 0
4 Ψ2[2] = 7 + 2 = 9

Ψ3[2] = Ψ2[0]−W 0
4 Ψ2[2] = 7− 2 = 5

Ψ3[1] = Ψ2[1] + W 1
4 Ψ2[3] = −3− 4j

Ψ3[3] = Ψ2[1]−W 1
4 Ψ2[3] = −3 + 4j

which gives the final result (compare to Problem 12 and Problem 43)

X[0] = Ψ3[0] = 9

X[1] = Ψ3[1] = −3− 4j

X[2] = Ψ3[2] = 5

X[3] = Ψ3[3] = −3 + 4j

Ψ [0]1

Ψ [1]1

Ψ [2]1

Ψ [3]1

Ψ [0]2

Ψ [1]2

Ψ [2]2

Ψ [3]2

Ψ [0]3

Ψ [1]3

Ψ [2]3

Ψ [3]3
−1W4

−1

−1W2

−1W2
0

0

W4
0

1

Figure 131: Problem 65: Flow-graph of the radix-2 DIT FFT algorithm with modified butterfly
module.
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66. Problem: Express the decimal number −0.3125 as a binary number using sign bit and
four bits for the fraction in the format of (a) sign-magnitude, (b) ones’ complement, (c)
two’s complement. What would be the value after truncation, if only three bits are saved.

Solution: The binary number representation is discussed in (Mitra 2Ed Sec. 8.4 / 3Ed
Sec. 11.8 ). Now, −0.3125 = −5/16. We can express it in fixed-point representation
using a sign bit s and four bits for the fraction.

There are three different forms for negative numbers, for which all the sign bit is 0 for a
positive number and 1 for a negative number.

a) Sign-magnitude format: 1∆0101.
b-bit fraction is always

∑b
i=1 a−i2

−i. For a negative number s = 1:
S = −(0 · 2−1 + 1 · 2−2 + 0 · 2−3 + 1 · 2−4) = −0.3125.

b) Ones’ complement: 1∆1010.
Decimal number S = −s(1− 2−b) +

∑b
i=1 a−i2

−i. The negative number can also be

achieved by complementing all bits of the corresponding positive value (+0.3125 ,

0∆0101→ 1∆1010 , −0.3125).
S = −1(1− 2−4) + (1 · 2−1 + 0 · 2−2 + 1 · 2−3 + 0 · 2−4)
= −0.9375 + 0.625 = −0.3125

c) Two’s complement: 1∆1011.
Decimal number S = −s+

∑b
i=1 a−i2

−i. It can also be achieved by complementing all

bits and adding 1 to the least-significant bit (LSB) (+0.3125 , 0∆0101→ 1∆1010+
1 = 1∆1011 , −0.3125).
S = −1 + (1 · 2−1 + 0 · 2−2 + 1 · 2−3 + 1 · 2−4)
= −1 + 0.6875 = −0.3125

The two’s complement is normally used in DSP chips.

After truncation

a) 1∆0101→ 1∆01 , −0.25

b) 1∆1010→ 1∆10 , −0.25

c) 1∆1011→ 1∆10 , −0.5

it can be seen that in this case truncation of (a) and (b) produced a bigger number, but
(c) a smaller. The analysis of quantization (truncation) process (Mitra 2Ed Sec. 9.1 /
3Ed Sec. 12.1 ) results to quantization errors depicted in Problem 68.
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67. Problem: In the following Figure 132, some error probability density functions of the
quantization error are depicted.

e

f(e)

e

f(e)

−∆/2 ∆/2

−∆ ∆

(b)

(c)

e

f(e) (a)

∆/2−∆/2

Figure 132: Problem 67: Error density functions, also at page 23.

(a) Rounding

(b) Two’s complement truncation

(c) Magnitude (one’s complement) truncation

is used to truncate the intermediate results. Calculate the expectation value of the quan-
tization error me and the variance σ2

e in each case.

Solution: In this problem we are analysing different types of quantization methods. ∆
here means the quantization step, ∆ = 2−B. For example, if we are using (B+1) = (4+1)
bits and fixed-point numbers with two’s complement representation, possible 2B+1 = 32
quantized values are
{−1,−15/16,−14/16, . . . , 14/16, 15/16}.
The area (integral) of the propability density function f(e) is always one. All the dis-
tributions are uniform. Hence, f(e) (height of the box) of each pdf is easily computed.
We first compute E[E] = me and Var[E] = E[(E − E[E])2] = σ2

e for general uniform
distribution (see Figure 133).

ba

f(e)

e

1/(b−a)

Figure 133: Computing the mean and variance of general uniform distribution in Problem 67.

f(e) =







1

b− a
a ≤ e ≤ b

0 e < a ∨ e > b

me =

∫ ∞

−∞

ef(e)de =

∫ b

a

e
1

b− a
de =

1

b− a

b/

a

1

2
e2

=
1

2

1

b− a
(b2 − a2) =

1

2

1

b− a
(b− a)(b + a) =

1

2
(b + a)
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σ2
e =

∫ ∞

−∞

(e−me)
2f(e)de =

∫ b

a

[

e− 1

2
(a + b)

]2
1

b− a
de

=
1

b− a

b/

a

1

3

[

e− 1

2
(a + b)

]3

=
1

3

1

b− a

{[

b− 1

2
(a + b)

]3

−
[

a− 1

2
(a + b)

]3
}

=
1

3

1

b− a

{[
1

2
b− 1

2
a

]3

−
[
1

2
a− 1

2
b

]3
}

=
1

12

1

b− a
(b− a)3 =

1

12
(b− a)2

Computation of mean and variance for each tree cases in the exercise paper, (a) rounding,
(b) two’s complement truncation, and (c) magnitude truncation.

a) Rounding: a = −∆
2
, b = ∆

2

me =
1

2
(−∆

2
+

∆

2
) = 0

σ2
e =

1

12

[
∆

2
−
(

−∆

2

)]2

=
∆2

12

b) Two’s complement truncation: a = −∆, b = 0

me =
1

2
(−∆ + 0) = −∆

2

σ2
e =

1

12
[0− (−∆)]2 =

∆2

12

c) Magnitude truncation: a = −∆, b = ∆

me =
1

2
(−∆ + ∆) = 0

σ2
e =

1

12
[∆− (−∆)]2 =

∆2

3
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68. Problem: In this problem we study the roundoff noise in direct form FIR filters.
Consider an FIR filter of length N having the transfer function

H(z) =

N−1∑

k=0

h[k]z−k.

Sketch the direct form realization of the transfer function.

a) Derive a formula for the roundoff noise variance when quantization is done before
summations.

b) Repeat (a) for the case where quantization is done after summations, i.e. a double
precision accumulator is used.

Solution: Direct form realization of the filter. Quantization blocks are marked by Q in
Figure 134.

y[n]

h[1]h[0] h[N − 1]

x[n]

Q Q

z−1z−1 z−1

Q

Figure 134: Filter with finite wordlength in Problem 68.

a) The roundoff noise model (ei[n]:s are error sources), when quantization is done before
summations, is depicted in Figure 135.

h[N − 1]

y[n]

e0[n] e1[n] eN−1[n]

h[0]

x[n]

h[1]

z−1z−1 z−1

Figure 135: Roundoff noise model with N quantization points in Problem 68.

It is assumed that the quantization is done using rounding. B + 1 bits are used in
the coefficient quantization (∆ = 2−B):

⇒ σ2
e =

2−2B

12
, me = 0 for all ei[n], i = 0, . . . , N − 1.
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Transfer functions from noise sources to the output are equal to unity. Total output
noise is thus

e[n] =

N−1∑

i=0

ei[n] .

The variance of the noise is

σ2
e,tot = E

[
e2[n]

]
− E[e[n]]

︸ ︷︷ ︸

=0 (rounding)

2

= E





(
N−1∑

i=0

ei[n]

)2


 [E[ei[n]ej [n]] = 0, i 6= j]

=

N−1∑

i=0

E
[
e2

i [n]
]

=

N−1∑

i=0

σ2
e = Nσ2

e = N
2−2B

12

b) The model, when quantization is done after summations, is drawn in Figure 136.
Now there is only one quantization point, i.e., there is only one noise source, e[n].

⇒ σ2
e,tot = σ2

e =
2−2B

12
.

h[1]h[0] h[N − 1]

y[n]

x[n]

z−1z−1 z−1

Q

Figure 136: Filter with only one quantization point in Problem 68.
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69. Problem: Consider a lowpass DSP system with a second-order noise reduction system
in Figure 137(a).

a) What is the transfer function of the system if infinite wordlength is used?

b) Derive an expression for the transform of the quantized output, Y (z), in terms of
the input transform, X(z), and the quantization error, E(z), and hence show that
the error feedback network has no adverse effect on the input signal.

c) Deduce the expression for the error feedback function.

d) What values k1 and k2 should have in order to work as an error-shaping system?

Solution: The quantization errors produced in digital systems may be compensated by
error-shaping filters. First-order and second-order feedback structures are introduced in
(Mitra 2Ed Sec. 9.10.1, 9.10.2 / 3Ed Sec. 12.10.1, 12.10.2 ). The error components are
extracted from the system and processed e.g. using simple digital filters. This way the
noise at the output of the system can be reduced.

Consider first the block diagram shown in Figure 137(a) and its round-off noise model in
Figure 137(b).

z−1z−1

z−1 z−1

z−1

z−1z−1

Q

k2 k1

1

2

1 −0.81

1.75

e[n]

−1

y[n]x[n]

w[n]

(a)

z−1z−1

z−1 z−1

z−1

z−1z−1

k2 k1

1

2

1 −0.81

1.75

x[n]

w[n]

y[n]

e[n]

(b)

Figure 137: (a) Second-order direct form I system with second-order noise reduction, (b) and
its noise model in Problem 69.

a) If infinite precision is used, the quantization is not needed and e[n] ≡ 0 (see Fig-
ure 137(b) with e[n] = 0). In that case, the system function is

H(z) =
1 + 2z−1 + z−2

1− 1.75z−1 + 0.81z−2

Computing zeros and poles we get a pole-zero diagram from which it can be derived
that the filter is lowpass (Figure 138).

b) From Figure 137(a) it can be obtained the following difference equations:

e[n] = y[n]− w[n]

w[n] = (x[n] + 2x[n− 1] + x[n− 2])

+ (1.75y[n− 1]− 0.81y[n− 2])

+ (k1e[n− 1] + k2e[n− 2])
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−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

2

Pole−zero−diagram of H(z)

Figure 138: The pole-zero plot of H(z) = (1+2z−1+z−2)/(1−1.75z−1+0.81z−2) in Problem 69.

After z-transform,

Y (z) =
[ 1 + 2z−1 + z−2

1− 1.75z−1 + 0.81z−2

]

X(z) +
[ 1 + k1z

−1 + k2z
−2

1− 1.75z−1 + 0.81z−2

]

E(z)

= H(z)X(z) + He(z)E(z)

It can be observed that the noise transfer function He(z) modifies only the quanti-
zation error.

c) The noise transfer function is

He(z) =
1 + k1z

−1 + k2z
−2

1− 1.75z−1 + 0.81z−2
= Heu(z) Hes(z)

Notice that without error-shaping feedback structure, i.e., k1 = 0 and k2 = 0, the
noise transfer function is (u = unshaped)

Heu(z) =
1

1− 1.75z−1 + 0.81z−2

So, the error-feedback circuit is actually shaping the error spectrum by (s = shaping)

Hes(z) = 1 + k1z
−1 + k2z

−2

d) Without error-shaping the quantized output spectrum is

Yu(z) = H(z)X(z) + Heu(z)E(z)

Error-shaping filter Hes(z) should efficiently discard the effects of the poles of Heu(z).
Error-feedback coefficients are chosen to be simple integers or fractions (ki = 0,±0.5,±1,±2),
so that the multiplication can be performed using a binary shift operation and it
will not introduce an additional quantization error. Choosing k1 = −2, k2 = 1,
Hes(z) = 1− 2z−1 + z−2 is a highpass filter with two zeros at z = 1.

The error shaping structure lowers the noise in the passband by pushing it into the
stopband of the filter (Mitra 2Ed Fig. 9.45 / 3Ed Fig. 12.46 ).
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70. Problem: Consider a cosine sequence x[n] = cos(2π(f/fs)n) where f = 10 Hz and
fs = 100 Hz as depicted in the top left in Figure 139. While it is a pure cosine, its
spectrum is a peak at the frequence f = 10 Hz (top middle) or at ω = 2πf/fs = 0.2π
(top right).

a) Sketch the output sequence xu[n] and its spectra using up-sampler with up-sampling
factor L = 2.

b) Sketch the output sequence xd[n] and its spectra using down-sampler with factor
M = 2.

Solution: Sometimes it is necessary or useful to change the sampling frequency fs.
Consider music formats DAT (48 kHz) and CD (44.1 kHz).

0 0.05 0.1 0.15 0.2
−1

−0.5

0

0.5

1

x[n] = cos(2 π 10/100 n)

x[
n]

0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6 f
s

|X(ej ω)|, Hz

0 pi 2pi

0

0.1

0.2

0.3

0.4

0.5

0.6 ω
s
/2

|X(ej ω)|, ω x π

Figure 139: Problem 70(a). The original sequence of a cosine of f = 10 Hz and its spectrum.
The angular frequency ω = 2π(f/fs) = 2π(10/100) = 0.2π.

a) Up-sampling with factor L = 2. In the time domain there will be L−1 zeros between
the original samples, see Figure 140(a).

xu[n] =

{

x[n/L], n = 0,±L,±2L, . . .

0, otherwise

=

{

x[n/2], n = 0,±2,±4, . . .

0, otherwise

In the frequency domain the sampling frequency is multiplied by L, hence, the new
sampling frequency is 200 Hz. L− 1 images from the original spectrum are emerged
equivalently between 0 and fs,new.

Xu(e
jω) = X(ejωL) = X(ej2ω)

Each cosine is a peak pair (±f) in the spectrum. The original peaks are at f = 10
and f = 200 − 10 = 190 Hz, and after up-sampling new images at f = 90 and
f = 110 Hz, as shown in Figure 140(b). The same with angular frequencies is shown
in Figure 140(c).

Notice that if you ideally convert the sequence xu[n] into continuous-time xu(t) you
will find also a high frequency component, an image component. Normally images
are filtered out using a lowpass filter (see anti-imaging and anti-aliasing filters). See
Figure 141.
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Figure 140: Problem 70(a). Up-sampled signal xu[n], factor L = 2. The sampling frequency is
increased to 200 Hz, and there is an image spectrum.
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x[n] = cos(2 π 10/100 n)

x[
n]

f
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 = 100 Hz

−1
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1
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−1

0

1

Upsampled and LP−FILTERED (image filtered out), x
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[n] 

x uL
P
[n

] f
s
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Figure 141: A closer look at up-sampling. Top, original sequence. Middle L = 2, L − 1 = 1
zeros added between the original samples. Bottom, using (ideal) LP-filter to remove the image,
i.e., 90 Hz component. The continuous curve is plotted only for better visual view. See the
text in Problem 70(a).

b) Down-sampling with factor M = 2 means taking only every second sample.

xd[n] = x[nM ] = x[2n]

A possible effect is losing information. However, in this case, this does not occur
because f = 10 Hz < fs,new/2 = 25 Hz. See Figure 142(a).

In the frequency domain the sampling frequency is decreased to 50 Hz. See Fig-
ures 142(b)-(c).

Xd(e
jω) =

1

M

M−1∑

k=0

X(ej(ω−2πk)/M)
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Figure 142: Problem 70(b). Down-sampled signal xd[n], factor M = 2. The sampling frequency
is decreased to 50 Hz.
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71. Problem: Express the output y[n] of the system shown in Figure 143 as a function of
the input x[n].

↑ 2

↑ 2

↓ 2

↓ 2
x[n]

w[n]

vu[n]v[n]

z−1 z−1

y[n]wu[n]

Figure 143: Multirate system of Problem 71.

Solution: Consider an input signal x[n] with the corresponding z-transform X(z). After
factor-of-L up-sampling, the z-transform of the signal xu[n] is

Xu(z) = X(zL)

and after factor-of-M down-sampling, the z-transform of the signal xd[n] is

Xd(z) =
1

M

M−1∑

k=0

X(z1/MW−k
M )

where WM = e−j2π/M . See (Mitra 2Ed Sec. 10.1.2 / 3Ed Sec. 13.1.2 ) for the derivation
of these equations.

Using these equations, let us derive the z-transforms of the intermediate signals v[n], vu[n],
w[n], and wu[n] and finally the z-transform of the output y[n]. Let us denote the delayed
version of the input as X ′(z) = z−1X(z). Furthermore, note that W−1

2 = ej2π/2 = −1.

V (z) =
1

2

1∑

k=0

X(z1/2W−k
2 ) =

1

2
X(z1/2) +

1

2
X(−z1/2)

W (z) =
1

2

1∑

k=0

X ′(z1/2W−k
2 ) =

1

2
z−1/2X(z1/2)− 1

2
z−1/2X(−z1/2)

Vu(z) = V (z2) =
1

2
X(z) +

1

2
X(−z)

Wu(z) = W (z2) =
1

2
z−1X(z)− 1

2
z−1X(−z)

Y (z) = z−1Vu(z) + Wu(z) = z−1X(z)

or y[n] = x[n− 1] in time-domain (derive the same in time-domain!).
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72. Problem: Show that the factor-of-L up-sampler xu[n] and the factor-of-M down-sampler
xd[n] defined as in Problem 70 are linear systems.

Solution: First, consider the up-sampler. Let x1[n] and x2[n] be two arbitrary inputs
with y1[n] and y2[n] as the corresponding outputs. Now,

y1[n] =

{
x1[n/L] : n = 0,±L,±2L, . . .

0 : otherwise

y2[n] =

{
x2[n/L] : n = 0,±L,±2L, . . .

0 : otherwise

Let us now apply the input x3[n] = αx1[n] + βx2[n] with the corresponding output y3[n]
as

y3[n] =

{
αx1[n/L] + βx2[n/L] : n = 0,±L,±2L, . . .

0 : otherwise

=

{
αx1[n/L]

0
+

{
βx2[n/L] : n = 0,±L,±2L, . . .

0 : otherwise

= αy1[n] + βy2[n]

Thus, the up-sampler is a linear system.

Now, consider the down-sampler with the inputs x1[n] and x2[n] and the corresponding
outputs y1[n] and y2[n]. Now, y1[n] = x1[nM ] and y2[n] = x2[nM ]. By applying the input
x3[n] = αx1[n] + βx2[n] we get the corresponding output y3[n] = x3[nM ] = αx1[nM ] +
βx2[nM ]. Hence, the down-sampler is also a linear system.

It should also be noted, that both the up-sampler and the down-sampler are time-varying,
i.e. not LTI systems.
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73. Problem: Consider the multirate system shown in Figure 144 where H0(z), H1(z), and
H2(z) are ideal lowpass, bandpass, and highpass filters. Sketch the Fourier transforms
of the outputs y0[n], y1[n], and y2[n] if the Fourier transform of the input is as shown in
Figure 145(a).

Solution: First, let us denote the down-sampled signal as xd[n] and the again up-sampled
signal as xu[n], shown in Figure 144.

↓ 3 ↑ 3
x[n]

H0(z)

H1(z)

H2(z)

y0[n]

y1[n]

y2[n]

xd[n] xu[n]

Figure 144: The multirate system in Problem 73.

The corresponding Fourier transforms (spectra) Xd(z) and Xu(z) are as follows (notice
the reduced amplitude) in Figure 145.

ω

X(ejω )

0 π/3 2π/3 π

1

0

Xd(ejω )

0 π

1

3

0
2π

ω

Xu(ejω )

0 π

1

3

0
2π

ω

Figure 145: Original, upsampled and downsampled spectrum in Problem 73.

Now, the Fourier transforms of the outputs Y0(z), Y1(z), and Y2(z), are obtained by
(ideally) filtering Xu(z). The output spectra are in Figure 146.

ω

H0(ejω )

0 π/3 2π/3 π

1

0 ω

H1(ejω)

0 π/3 2π/3 π

1

0 ω

H2(ejω)

0 π/3 2π/3 π

1

0

ω

Y0(ejω )

0 π/3 2π/3 π

1

3

0 ω

Y1(ejω )

0 π/3 2π/3 π

1

3

0 ω

Y2(ejω)

0 π/3 2π/3 π

1

3

0

Figure 146: Bandpass filters in top row, and corresponding Output spectra in bottom row in
Problem 73.
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74. Problem: Derive a FIR filter with given specifications and Fourier series method with
Hamming window. Implement a corresponding IFIR filter and compare the order of both
filters.

Solution: Specifications for a FIR filter were the following: (i) lowpass, (ii) passband ends
at ωp = 0.15π, (iii) stopband starts from ωs = 0.2π, (iv) passband maximum attenuation
is 1 dB, (v) stopband minimum attenuation is 50 dB. Implementation using truncated
Fourier series method (window method) with Hamming window.

a) Specifications are drawn in Figure 147(a).

b) Hamming window is defined as

w[n] = 0.54 + 0.46 cos(
2πn

2M
) −M ≤ n ≤ +M

The window length is 2M + 1 and the window/filter order N = 2M . When having
the specifications ωp = 0.15π and ωs = 0.2π we get ∆ω = 0.05π. The connection of
M and transition band ∆ω with Hamming window is

M = ⌈3.32π

∆ω
⌉

where ⌈.⌉ is rounding up to the next integer. Minimum order with Hamming window
is

N = 2M = 2 · ⌈3.32π

∆ω
⌉ = 2 · ⌈3.32

0.05
⌉ = 134

c) The cut-off frequency of the filter in the window method is defined to be ωc =
0.5 · (ωp + ωs). The filter of order N = 2M is computed by

hFIR[n] = hideal[n] · w[n], −M ≤ n ≤M

where hFIR[n] is the filter constructed from the ideal filter with cut-off at ωc = 0.175π
multiplied by a Hamming window with M = 67

hideal[n] =
sin(ωcn)

πn
=

ωc

π
sinc(

ωcn

π
) = 0.175 sinc(0.175n) −∞ < n <∞

w[n] = 0.54 + 0.46 cos(
2πn

134
) − 67 ≤ n ≤ 67

hFIR[n] = 0.175 sinc(0.175n) ·
(
0.54 + 0.46 cos(

2πn

134
)
)

− 67 ≤ n ≤ 67

In the origo w[0] = 1 and hFIR[0] = hideal[0] = 0.175. The magnitude response of
the filter is in Figure 147(b) with thick line HFIR(z). It can be seen that the filter
fulfills given specifications.

d) Consider now another way to implement a FIR filter with the same specifications. In
the interpolated FIR filter (IFIR) (Mitra 2Ed Sec. 10.3, p. 680 / 3Ed Sec. 10.6.2,
p. 568 ) the filter is a cascade of two FIR filters HIF IR(z) = G(zL) · F (z). G(zL) is
derived from G(z) by replacing all delays by L-multiple delays, i.e., all z are replaced
by zL (upsampling).

Using the factor L = 4 the following filters will be implemented, see also Fig-
ure 148(a): G(z) with cut-offs ωp = 4 · 0.15π = 0.6π and ωs = 4 · 0.2π = 0.8π.
After upsampling, there will be L− 1 zeros between each g[n], and L− 1 spectrum
“images”. The normalized cut-off frequencies for G(z4) are ωp = 0.15π and ωs = 0.2π.
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Figure 147: Problem 74: (a) Specifications for the filter. The scale in x-axis [0 . . . 1] corre-
sponds ω = [0 . . . π]. (b) Magnitude responses of |HFIR(ejω)| (thick) and |HIF IR(ejω)| (thin).
Interpolated FIR filter is HIF IR(z) = G(z4) · F (z).

The target of F (z) is to filter out all “image”components. So, the stopband can start
from that frequency where the first “image” appears: ωp = 0.15π and ωs = 0.3π.

Both filters G(z) and F (z) are implemented in the same way with Hamming window.
The order of G(z) is 34 with ∆ω = |0.8π − 0.6π| and ωc = 0.7π. After that G(z)
is modified to G(z4) by adding zeros in g[n]. The order of F (z) is 46 with ∆ω =
|0.3π − 0.15π| and ωc = 0.225π. All corresponding magnitude responses are plotted
in Figure 148(b). The magnitude response of HIF IR(z) is drawn in Figure 147(b)
with thin line HIF IR(z). Specifications are met and the overall behavior is very
similar to that of HFIR(z).

0

0 10.6 0.8
G(z)

G(z)

G(z^4)

0 1 2

21

0.15

0.2

0.35

0.3

F(z)

0.15

0.3

0.8

0.6

0 2 4 6 8

"image" "image" "image"

0 0.2 0.4 0.6 0.8 1
−90
−60
−30

0

G
(z

)

0 0.2 0.4 0.6 0.8 1
−90
−60
−30

0

G
(z

4 )

0 0.2 0.4 0.6 0.8 1
−90
−60
−30

0

F
(z

)

0 0.2 0.4 0.6 0.8 1
−90
−60
−30

0

H
IF

IR
(z

)

Figure 148: Problem 74: (a) diagram of filters G(z) (0 . . . π), G(z) (0 . . . 8π), G(zL) (0 . . . 2π),
and F (z) (0 . . . 2π) with cut-off frequencies and upsampling factor L = 4. (b) Magnitude
responses of G(z), G(zL), F (z), and HIF IR(z) = G(z4) ·F (z) using Matlab and fir1. In x-axis
normalized frequencies (1 corresponds π) are used in all figures.
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T-61.3010 Digital Signal Processing and Filtering
(C) Formulas for spring 2007. Corrections and comments to t613010@cis.hut.fi, thank you!

Formulas

Even and odd functions:
Even{x(t)} = 0.5 · [x(t) + x(−t)]
Odd{x(t)} = 0.5 · [x(t)− x(−t)]

Roots of second-order polynomial:
ax2 + bx + c = 0
x = (−b±

√
b2 − 4ac)/(2a)

Logarithms:
log
(
(A · B/C)D

)
= D

(
log A + log B − log C

)

loga b = logc b/ logc a
decibels: 10 log10(B/B0), 20 log10(A/A0)
10 log10(0.5) ≈ −3.01 dB, 20 log10(0.5) ≈ −6.02 dB
20 log10(0.1) ≈ −20 dB, 20 log10(0.01) ≈ −40 dB

Complex numbers, unit circle:
i ≡ j =

√
−1 = −1/j

z = x + jy = r ejθ

r =
√

x2 + y2

θ = arctan(y/x) + nπ, (n = 0, ifx > 0, n = 1, ifx < 0)
x = r cos(θ), y = r sin(θ)
ejθ = cos(θ) + j sin(θ) (Euler’s)
cos(θ) = (1/2) · (ejθ + e−jθ), sin(θ) = (1/2j) · (ejθ − e−jθ)
z1 · z2 = r1r2e

j(θ1+θ2), z1/z2 = (r1/r2)e
j(θ1−θ2)

zn = rnejnθ = rn(cos θ + j sin θ)n = rn(cos nθ + j sin nθ)
N
√

z =
N
√

r ejθ = | N
√

r| ej(θ+2πk)/N , k = 0, 1, 2, . . . , N − 1

Trigonometric functions:
1◦ = π/180 radians ≈ 0.01745 rad, 1 rad = 180◦/π ≈ 57.30◦

sinc(θ) = sin(πθ)/(πθ)
sin(θ)/θ→ 1, when θ → 0; sinc(θ)→ 1, when θ → 0
cos2(θ) + sin2(θ) = 1
cos2(θ) + sin2(θ) = 1
sin(θ) = θ − θ3

3!
+ θ5

5!
− . . . + (−1)n θ2n+1

(2n+1)!
+ . . . (Taylor)

cos(θ) = 1− θ2

2!
+ θ4

4!
− . . . + (−1)n θ2n

(2n)!
+ . . . (Taylor)

θ 0 π/6 π/4 π/3

sin(θ) 0 0.5
√

2/2
√

3/2

cos(θ) 1
√

3/2
√

2/2 0.5
θ π/2 3π/4 π −π/2

sin(θ) 1
√

2/2 0 −1

cos(θ) 0 −
√

2/2 −1 0

π ≈ 3.1416,
√

3/2 ≈ 0.8660,
√

2/2 ≈ 0.7071

Geometric series:
∑+∞

n=0 an = 1
1− a, |a| < 1

∑N
n=0 an = 1− aN+1

1− a , |a| < 1
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Continuous-time unit step and unit impulse fun.:

µ(t) =

{

1, t > 0

0, t < 0

δ∆(t) = d
dt

µ∆(t), δ(t) = lim∆→0 δ∆(t)
∫∞

−∞
δ(t) dt = 1

∫∞

−∞
δ(t− t0)x(t) dt = x(t0)

In DSP notation 2πδ(t) is computed 2π
∫

δ(t) · 1 dt = 2π, when t = 0, and = 0 elsewhere.

Discrete-time unit impulse and unit step functions:

δ[n] =

{

1, n = 0

0, n 6= 0
µ[n] =

{

1, n ≥ 0

0, n < 0

Convolution
Convolution is commutative, associative and distributive.
y(t) = h(t) ⊛ x(t) =

∫∞

−∞
h(τ)x(t − τ) dτ

y[n] = h[n] ⊛ x[n] =
∑+∞

k=−∞ h[k]x[n− k]

Correlation:
rxy[l] =

∑+∞
n=−∞ x[n]y[n− l] = x[l] ⊛ y[−l]

rxx[l] =
∑+∞

n=−∞ x[n]x[n − l]

Mean and variance of random signal:
mX = E[X] =

∫
xpX(x)dx

σ2
X =

∫
(x−mX)2pX(x)dx = E[X2]−m2

X

Frequencies, angular frequencies, periods:
Here fs (also fT later) is the sampling frequency
Frequency f , [f ] = Hz = 1/s
Angular frequency Ω = 2πf = 2π/T , [Ω] = rad/s
Normalized angular frequency
ω = 2πΩ/Ωs = 2πf/fs, [ω] = rad/sample
Normalized frequency in Matlab
fMATLAB = 2f/fs, [fMATLAB] = 1/sample

Integral transform properties
Here all integral transforms share some basic properties. Examples given with CTFT, x[n] ↔
X(ejω), x1[n] ↔ X1(e

jω), and x2[n] ↔ X2(e
jω) are time-domain signals with corresponding

transform-domain spectra. a and b are constants.
Linearity. All transforms are linear.
ax1[n] + bx2[n]↔ aX1(e

jω) + bX2(e
jω)

Time-shifting. There is a kernel term in transform, e.g.,
x[n− k]↔ e−jkωX(ejω)
Frequency-shifting. There is a kernel term in signal e.g.,
ejωknx[n]↔ X(ej(ω−ωk))
Conjugate symmetry.
x∗[n]↔ X∗(e−jω)
If x[n] ∈ R, then
X(ejω) = X∗(e−jω)
|X(ejω)| = |X(e−jω)|
∠X(ejω) = −∠X(e−jω)
If x[n] ∈ R and even, then X(ejω) ∈ R and even.
If x[n] ∈ R and odd, then X(ejω) purely ∈ C and odd.
Time reversal. Transform variable is reversed, e.g.,
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x[−n]↔ X(e−jω)
Differentiation. In time and frequency domain, e.g.,
x[n]− x[n− 1]↔ (1− e−jω)X(ejω)
nx[n]↔ j d

dω
X(ejω)

Duality. Convolution property: convolution in time domain corresponds multiplication in trans-
form domain
x1[n] ⊛ x2[n]↔ X1(e

jω) ·X2(e
jω)

and multipication property: vice versa
x1[n] · x2[n]↔ 1

2π

∫

2π
X1(e

jθ)X2(e
j(ω−θ)) dθ

Parseval’s relation. Energy in signal and spectral components:
∑
|x[n]|2 = 1

2π

∫

2π
|X(ejω)|2 dω

Integral transforms
Definitions given in first two lines of each type. Some common pairs as well as properties are
listed. See math reference book for complete tables.

Fourier-series of continuous-time periodic signals:
x(t) =

∑∞
k=−∞ ak ejkΩ0t

ak = 1
T

∫

T
x(t) e−jkΩ0t dt

x(t− t0)↔ ake
jkΩ0t0

ejMΩ0tx(t)↔ ak−M∫

T
xa(τ)xb(t− τ) dτ ↔ Takbk

xa(t)xb(t)↔
∑

l albk−l
d
dt

x(t)↔ jkΩ0ak

Fourier-series of discrete-time periodic sequences:
x[n] =

∑

k=〈N〉 ak ejkω0n, x[n] periodic with N0

ak = 1
N

∑

n=〈N〉 x[n] e−jkω0n, ak periodic with N0

x[n−M ]↔ ake
jkω0M

ejMω0nx[n]↔ ak−M

Continuous-time Fourier-transform (CTFT):
x(t) = 1

2π

∫∞

−∞
X(jΩ) ejΩt dΩ

X(jΩ) =
∫∞

−∞
x(t) e−jΩt dt

x(t− tk)↔ ejΩtkX(jΩ)
ejΩktx(t)↔ X(j(Ω− Ωk))
xa(t) ⊛ xb(t)↔ Xa(jΩ)Xb(jΩ)
xa(t)xb(t)↔ 1

2π
Xa(jΩ) ⊛ Xb(jΩ)

d
dt

x(t)↔ jΩX(jΩ)
tx(t)↔ j d

dΩ
X(jΩ)

ejΩ0t ↔ 2πδ(Ω− Ω0)
cos(Ω0t)↔ π[δ(Ω− Ω0) + δ(Ω + Ω0)]
sin(Ω0t)↔ jπ[δ(Ω + Ω0)− δ(Ω− Ω0)]
x(t) = 1↔ 2πδ(Ω)

x(t) =

{

1, |t| < T1

0, |t| > T1

↔ 2 sin(ΩT1)
Ω

sin(Wt)
πt
↔ X(jΩ) =

{

1, |Ω| < W

0, |Ω| > W

δ(t)↔ 1
δ(t− tk)↔ ejΩtk

e−atµ(t)↔ 1
a+jΩ

, where Real{a} > 0
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Discrete-time Fourier-transform (DTFT):
x[n] = 1

2π

∫

2π
X(ejω) ejωn dω

X(ejω) =
∑∞

n=−∞ x[n] e−jωn, X(ejω) periodic 2π
x[n− k]↔ e−jkωX(ejω)
ejωknx[n]↔ X(ej(ω−ωk))
x1[n] ⊛ x2[n]↔ X1(e

jω) ·X2(e
jω)

x1[n] · x2[n]↔ 1
2π

∫

2π
X1(e

jθ)X2(e
j(ω−θ)) dθ

nx[n]↔ j d
dω

X(ejω)
ejω0n ↔ 2π

∑

l δ(ω − ω0 − 2πl)
cos(ω0n)↔ π

∑

l[δ(ω − ω0 − 2πl) + δ(ω + ω0 − 2πl)
sin(ω0n)↔ jπ

∑

l[δ(ω + ω0 − 2πl)− δ(ω − ω0 − 2πl)
x[n] = 1↔ 2π

∑

l δ(ω − 2πl)

x[n] =

{

1, |n| ≤ N1

0, |n| > N1

↔ sin(ω(N1+0.5))
sin(ω/2)

sin(Wn)
πn

= W
π

sinc(Wn
π

)↔ X(ejω) =

{

1, 0 ≤ |ω| ≤W

0, W < |ω| ≤ π

δ[n]↔ 1
δ[n− k]↔ e−jkω

anµ[n]↔ 1
1−ae−jω , |a| < 1

Discrete Fourier-transform (DFT):
Connection to DTFT: X[k] = X(ejω)|ω=2πk/N

WN = e−j2π/N

x[n] = 1
N

∑N−1
k=0 X[k]W−kn

N , 0 ≤ n ≤ N − 1

X[k] =
∑N−1

n=0 x[n]W kn
N , 0 ≤ k ≤ N − 1

Laplace transform:
Convergence with a certain ROC (region of convergence). Connection to continuous-time
Fourier-transform: s = jΩ
x(t) = 1

2πj

∫ σ+j∞

σ−j∞
X(s)est ds

X(s) =
∫∞

−∞
x(t) e−st dt

z-transform:
Convergence with a certain ROC (region of convergence). Connection to discrete-time Fourier-
transform: z = ejω

x[n] = 1
2πj

∮
X(z)zn−1dz

X(z) =
∑∞

n=−∞ x[n]z−n

x[n− k]↔ z−kX(z)
x1[n] ⊛ x2[n]↔ X1(z) ·X2(z)
δ[n]↔ 1, ROC all z
δ[n− k]↔ z−k, all z, except 0 (k > 0) or ∞ (k < 0)
µ[n]↔ 1

1−z−1 , |z| > 1

−µ[−n− 1]↔ 1
1−z−1 , |z| < 1

anµ[n]↔ 1
1−az−1 , |z| > |a|

nanµ[n]↔ az−1

(1−az−1)2
, |z| > |a|

(n + 1)anµ[n]↔ 1
(1−az−1)2

, |z| > |a|
rn cos(ω0n)µ[n]↔ 1−r cos(ω0)z−1

1−2r cos(ω0)z−1+r2z−2 , |z| > |r|
rn sin(ω0n)µ[n]↔ r sin(ω0)z−1

1−2r cos(ω0)z−1+r2z−2 , |z| > |r|
LTI filter analysis
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Stability
∑

h |h[n]| <∞; unit cirle belongs to ROC
Causality h[n] = 0, n < 0; ∞ belongs to ROC
Unit step response s[n] =

∑n
k=−∞ h[k]

Causal transfer function of order max{M, N}:
H(z) = B(z)/A(z) = K ·

PM
m=0 bmz−m

PN
n=0 anz−n

= G ·
QM

m=1(1−dmz−1)
QN

n=1(1−pnz−1)

Zeros dm: B(z) = 0; Poles pn: A(z) = 0
Frequency, magnitude/amplitude, phase response, z ← ejω

H(ejω) = |H(ejω)| ej∠H(ejω)

H(ejω) = H(z)|z=ejω

H [k] = H(ejω)|ω=2πk/N

Group delay τ(ω) = − d
dω

∠H(ejω)
Important transform pairs and properties:
a δ[n− k]↔ a e−jkω ↔ a z−k

anµ[n]↔ 1/[1− a e−jω]↔ 1/[1− a z−1]
h[n] =

∑

i

(
ki · an

i µ[n]
)
↔ H(ejω) = . . .

. . .
∑

i

(
ki/[1− ai e

−jω]
)
↔ H(z) =

∑

i

(
ki/[1− ai z

−1]
)

a x[n− k]↔ a e−jkωX(ejω)↔ a z−kX(z)
y[n] = h[n] ⊛ x[n]↔ Y (z) = H(z) ·X(z)
rectangular ↔ sinc, sinc ↔ rectangular

LTI filter design (synthesis)
Bilinear transform H(z) = H(s)|s and prewarping
s = k · (1− z−1)/(1 + z−1), k = 1 or k = 2/T = 2fT

Ωprewarp,c = k · tan(ωc/2), k = 1 or k = 2/T = 2fT

Spectral transformations, ω̂c desired cut-off
LP-LP z−1 = (ẑ−1 − α)/(1− αẑ−1), where
α = sin(0.5(ωc − ω̂c))/ sin(0.5(ωc + ω̂c))
LP-HP z−1 = −(ẑ−1 + α)/(1 + αẑ−1), where
α = − cos(0.5(ωc + ω̂c))/ cos(0.5(ωc − ω̂c))
Windowed Fourier series method

H(ejω) =

{

1, |ω| < ωc

0, |ω| ≥ ωc

↔ h[n] = sin(ωcn)
πn

= ωc

π
sinc(ωcn

π
)

hFIR[n] = hideal[n] · w[n]
HFIR(ejω) = 1

2π

∫ π

−π
Hideal(e

jθ)W (ej(ω−θ)) dθ
Fixed window functions, order N = 2M , −M ≤ n ≤M :
Rectangular w[n] = 1
Hamming w[n] = 0.54 + 0.46 cos((2πn)/(2M))
Hann w[n] = 0.5 ·

(
1 + cos((2πn)/(2M))

)

Blackman w[n] = 0.42 + 0.5 cos(2πn
2M

) + 0.08 cos(4πn
2M

)
Bartlett w[n] = 1− (|n|/M)

Multirate systems
Upsampling (interpolation) with factor L, ↑ L

xu[n] =

{

x[n/L], n = 0,±L,±2L, . . .

xu[n] = 0, otherwise

Xu(z) = X(zL), Xu(e
jω) = X(ejωL)

Downsampling (decimation) with factor M , ↓M

xd[n] = x[nM ]
Xd(z) = (1/M)

∑M−1
k=0 X(z1/MW−k

M ),

Xd(e
jω) = (1/M)

∑M−1
k=0 X(ej(ω−2πk)/M)


