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SOLUTIONS TO EXERCISES 1

H1 / Problem 1.
Convolution sum is computed as

gk =
∞
∑

m=−∞

fmsk−m = . . .+ f−2sk+2 + f−1sk+1 + f0sk + f1sk−1 + f2s+2 + . . .

a) Now

f0 = 1, fm = 0 otherwise; (1)

s0 = 2, s1 = 1, sn = 0 otherwise (2)

Thus gk = f0sk−0 = sk, which is g0 = 2, g1 = 1, and gk = 0 elsewhere.
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The other sequence fk was an identity sequence (only one at k = 0, zero elsewhere), so it just copies the other
sequence sk into the output.

b) Now

f0 = 2, f1 = −1, fm = 0 otherwise; (3)

s0 = −1, s1 = 2, s2 = 1, sn = 0 otherwise. (4)

Thus
gk = f0sk−0 + f1sk−1 = 2sk − sk−1

and we get

g0 = 2s0 − s−1 = −2 (5)

g1 = 2s1 − s0 = 4 + 1 = 5 (6)

g2 = 2s2 − s1 = 2− 2 = 0 (7)

g3 = 2s3 − s2 = −1 (8)

gk = 0 otherwise (9)
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Sequence fk = {2,−1} was now a sum sequence of an identity filter multiplied by two (f0 = 2) and a shifted
identity filter multiplied by −1 (f1 = −1). Therefore the output consisted of a sum of sk multiplied by two and
a shifted sk multiplied by −1.

2sk − sk−1 = 2 · {−1, 2, 1} − 1 · {0− 1, 2, 1}
= {−2 + 0, 4 + 1, 2− 2, 0− 1} = {−2, 5, 0,−1}

See more examples in the computer session T1.
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H1 / Problem 2.
a) From Problem 1 b

f0 = 2, f1 = −1, fm = 0 otherwise; (10)

s0 = −1, s1 = 2, s2 = 1, sn = 0 otherwise (11)

we get using the definition

F (ω) =

∞
∑

m=−∞

fme−iωm

F (ω) = f0 · e−iω0 + f1e
−iω1 = 2− e−iω (12)

S(ω) = s0 · e−iω0 + s1 · e−iω1 + s2 · e−iω2 = −1 + 2e−iω + e−2iω (13)

Convulution of two sequences in time-domain corresponds multiplication of two transforms in transform/frequency-
domain. The real argument ω gets normally values −π . . . π or 0 . . . π

G(ω) = F (ω)S(ω) (14)

= (2 − e−iω) · (−1 + 2e−iω + e−2iω) (15)

= −2 + 5e−iω − e−3iω (16)

We find out that the coefficients {−2, 5, 0,−1} of the polynomial G(ω) are equal to the sequence gk.

Remark. There are several integral transforms that are used in specific cases:

• Fourier series , where signal f(t) is analog and periodic (Ω0), gives discrete and aperiodic Fourier series coefficients
Fn with multiples of the fundamental angular frequency Ω0

• (Continuous-time) Fourier transform, where signal f(t) is analog and aperiodic, gives continuous and aperiodic
transform F (Ω)

• Discrete-time Fourier transform, where signal fk is discrete and aperiodic, gives continuous and periodic trans-
form F (ω) as above

• Discrete Fourier transform (DFT), where signal fk is discrete and periodic (length N), gives discrete and periodic
transform Fn (length N)
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H1 / Problem 3.
a) Substitute F (ω) into the integral:

I =
1

2π

∫ π

−π

[

∞
∑

m=−∞

fme−iωm]eiωndω =
1

2π

∞
∑

m=−∞

fm

∫ π

−π

eiω(n−m)dω

with i =
√
−1 the imaginary unit (sometimes also denoted j).

For the integral we get (note that n,m ∈ Z)

∫

π

−π

eiω(n−m)dω =

{

2π if n = m,

/π
−π

1
i(n−m)e

iω(n−m) = 1
i(n−m)

(

eiπ(n−m) − e−iπ(n−m)
)

if n 6= m

We can easily see that eiπ(n−m) = e−iπ(n−m) because eiπ = e−iπ = −1. Thus the integral is 2π if n = m and zero
otherwise. Substituting this into the full expression gives I = fn which was to be shown.

b)

hn =
1

2π

∫ ω0

−ω0

eiωndω =
1

2π
/ω0

−ω0

1

in
eiωn (17)

=
1

2πin
(eiω0n − e−iω0n) (18)

=
1

2πin
[cos(ω0n) + i sin(ω0n)− cos(ω0n) + i sin(ω0n)] (19)

=
1

πn
sin(ω0n). (20)

Using the cut-off frequency ω = π/2 we get

hn =
1

πn
sin(

πn

2
)

which is sometimes written as hn = (1/2)sinc(n/2), where sinc function is sinc(ωn) = sin(πωn)/(πωn). Some values:
h0 = 0.5, h1 = 1/π, h2 = 0.

Note that at n = 0 we end up to 0/0. It can be solved, e.g., either Taylor series (1/x) sin(x/2) = (1/2)(2/x) sin(x/2) =
(1/2)−(x2/48)+ . . ., or l’Hospital’s rule by derivating both sides. Thus at zero the value is 0.5. In addition, sinc(0) = 1.

Note also that the sequence hn is infinitely long.
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H1 / Problem 4.
Now the number of bins is at most 100000, because the average number of substrings in a bin must be at least 10.

The number of different substrings of length n is 4n. We get

4n ≤ 100000

giving n ≤ 8.
An example of a histogram of a data sample given below. It is assumed that letters are drawn independently from

uniform distribution, i.e., the total amount of each letter is the same.
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Another example on building a histogram with the sequence ’AAGTACCGTGACGGAT’.
If n = 1, all possible substrings are ’A’, ’C’, ’G’, and ’T’, shortly A, C, G, T . The number of substrings is 41 = 4.

The count for each substring: |A| = 5, |C| = 3, |G| = 5, and |T | = 3.
If n = 2, all possible substrings are ’AA’, ’AC’, ’AG’, ’AT’, ’CA’, ’CC’, ’CG’, ’CT’, ’GA’, ’GC’, ’GG’, ’GT’, ’TA’,

’TC’, ’TG’, ’TT’, that is, 42 = 16 substrings. The count for each substring: |AA| = 1, |AC| = 2, |AG| = 1, |AT | = 0,
etc.
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H1 / Problem 5.
The volume of the unit hypercube is 1 and the volume of the set of inner points is Vd = (1− 2ǫ)d. For any ǫ, this

tends to 0 as n → ∞.
Below an illustration of hypercubes in dimensions d = 1, 2, 3 with ǫ = 0.1. We can see that the volume of inner

points decreases when the dimension increases.
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H1 / Problem 6.
Now the small hypercubes are similar, hence all have the same volume which must be 1

n
times the volume of the

large unit hypercube. (This is only possible for certain values of (n, d); for d = 2, n must be 4, 9, 16, ...; for d = 3, n
must be 8, 27, 64 ... etc.)

Also, we assume here a special distance which is not Euclidean distance but D(x1,x2) = maxi |xi1 − xi2|, that is,
the largest distance along the coordinate axes.

Then it is easy to see that the distance of the centres of the small hypercubes is equal to the length of their side

s. Because the volume is sd = 1
n
, we have s = 1

n

1

d .
The case of d = 2, n = 4 is shown below.
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