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H3 / Problem 1.
See lectures slides, chapter 5. Given a data set X = (x(1), x(2), . . . , x(n)) and a model of a probability density

function p(x|θ) with an unknown constant parameter vector θ, maximum likelihood method (“suurimman uskotta-

vuuden menetelmä”) estimates vector θ̂ which maximizes the likelihood function: θ̂ML = maxθ p(X|θ). In other words,
find the values of θ which most probably have generated data X.

Normally the data vectors X are considered independent so that likelihood function is a product of individual terms
p(X|θ) = p(x(1), x(2), . . . , x(n)|θ) = p(x(1)|θ) · p(x(2)|θ) · . . . · p(x(n)|θ). Given a numerical data set X, likelihood is
function of only θ. Because the maximum of the likelihood p(X|θ) and log-likelihood ln p(X|θ) is reached at the same
value θ, log-likelihood function L(θ) is prefered for computational reasons. While ln(A · B) = lnA + lnB, we get
L(θ) = ln p(X|θ) = ln

∏

j p(x(j)|θ) =
∑

j ln p(x(j)|θ).
Remember also that p(x, y|θ) can be written with conditional probabilities p(x, y|θ) = p(x)p(y|x, θ).

In this problem the model is y(i) = θx(i) + ǫ(i) which implies ǫ(i) = y(i) − θx(i). If there were no noise ǫ, θ
could be computed from a single observation θ = y(1)/x(1). However, now the error ǫ is supposed to be zero-mean
Gaussian noise with standard deviation σ: ǫ ∼ N(0, σ), that is E(ǫ) = 0, V ar(ǫ) = σ2. This results to E(y(i)|x(i), θ) =
θx(i) + E(ǫ) = θx(i) and V ar(y(i)|x(i), θ) = V ar(ǫ(i)). Hence (y(i)|x(i), θ) ∼ N(θx(i), σ) the density function is

p(y(i)|x(i), θ) =
1√
2πσ

· e−
(y(i)−θx(i))2

2σ2 (1)

The task is to maximize p(x, y|θ) = p(x)p(y|x, θ) w.r.t. θ. Assuming data vectors independent we get likelihood as
∏

i p(x(i))p(y(i)|x(i), θ). After taking logarithm the log-likelihood function is

L(θ) = const +

n
∑

i=1

(

ln
1√
2πσ

− (y(i)− θx(i))2

2σ2

)

(2)

= const− 1

2σ2

n
∑

i=1

(y(i)− θx(i))2 (3)

Maximizing L(θ) is equal to minimizing its opposite number: minθ
1

2σ2

∑n
i=1(y(i) − θx(i))2 = minθ

1
2σ2

∑n
i=1(ǫ(i))

2.
This equals to least squares estimation (“pienimmän neliösumman menetelmä”) because of the certain properties of ǫ
in this problem.

Minimum is fetched by setting the derivative w.r.t. θ to zero (the extreme point):

0 =
∂

∂θ

n
∑

i=1

(y(i)− θx(i))2 (4)

=

n
∑

i=1

(

2(y(i)− θx(i))(−x(i))
)

(5)

= −2
n

∑

i=1

y(i)x(i) + 2θ
n

∑

i=1

(x(i))2 (6)

(7)

which gives finally the estimate

θ̂ML =

∑n

i=1 x(i)y(i)
∑n

i=1 x(i)2
(8)
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H3 / Problem 2.
See lectures slides, chapter 5, and Problem 1. Bayes rule is

p(θ|x) =
p(x|θ)p(θ)

p(x)
(9)

Often only the maximum posterior estimate of θ (MAP) is computed. Taking logarithm gives ln p(θ|x) = ln p(x|θ) +
ln p(θ) − ln p(x), and the derivative w.r.t. θ is set to zero: ∂

∂θ
ln p(x|θ) + ∂

∂θ
ln p(θ) = 0. Compared to ML-estimation

(Problem 1), there is an extra term ∂
∂θ

ln p(θ).

In this problem we have also a data set X and now two variables θ and α to be estimated. The model is y(i) =
α + θx(i) + ǫ(i), where ǫ ∼ N(0, σ) as in Problem 1. Now E(y(i)|x(i), α, θ) = α + θx(i), and V ar(y(i)|x(i), α, θ) =
V ar(ǫ) = σ2. Thus y(i) ∼ N(α + θx(i), σ) and the likelihood function is

p(y(i)|x(i), α, θ) =
1√
2πσ

· e−
(y(i)−α−θx(i))2

2σ2 (10)

Parameters have also normal density functions (“prior densities”)

α ∼ N(0, 0.1) → p(α) =
1√

2π · 0.1
e−

(α−0)2

2·0.12 = const · e−50α2

(11)

θ ∼ N(1, 0.5) → p(θ) =
1√

2π · 0.5
e−

(θ−1)2

2·0.52 = const · e−2(θ−1)2 (12)

In Bayes MAP-estimation the log posterior probability to be maximized is ln p(x, y|α, θ) + ln p(α) + ln p(θ), where the
first term is the likelihood and the two latter terms prior densities:

ln p(α) = const− 50α2 (13)

ln p(θ) = const− 2(θ − 1)2 (14)

Hence, the task is

(α̂, θ̂) = arg max
α,θ

{

(− 1

2σ2
)

n
∑

i=1

[

(y(i)− α− θx(i))2
]

− 50α2 − 2(θ − 1)2
}

(15)

First, maximize w.r.t. α,

0 =
∂

∂α
(− 1

2σ2
)

n
∑

i=1

[

(y(i)− α− θx(i))2
]

− 50α2 − 2(θ − 1)2 (16)

= (− 1

2σ2
)
∑

i

[

2 · (y(i)− α− θx(i)) · (−1)
]

− 100α (17)

=
∑

i

y(i)− nα− θ
∑

i

x(i)− 100σ2α (18)

α̂MAP =

∑

i y(i)− θ
∑

i x(i)

n + 100σ2
(19)

and similarly θ, using previous result of α,

0 =
∂

∂θ
(− 1

2σ2
)

n
∑

i=1

[

(y(i)− α− θx(i))2
]

− 50α2 − 2(θ − 1)2 (20)

= (− 1

2σ2
)
∑

i

[

2 · (y(i)− α− θx(i)) · (−x(i))
]

− 4(θ − 1) (21)

=
∑

i

[

y(i)x(i)− αx(i)− θx(i)2
]

− 4σ2(θ − 1) | α← α̂MAP (22)

=
∑

i

y(i)x(i)−
(

∑

i y(i)− θ
∑

i x(i)

n + 100σ2

)

∑

i

x(i)− θ
∑

i

x(i)2 − 4σ2θ + 4σ2 (23)

θ̂MAP =

∑

i y(i)x(i)− (
P

i y(i))(
P

i x(i))

n+100σ2 + 4σ2

∑

i x(i)2 − (
P

x(i))2

n+100σ2 + 4σ2
(24)
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Some interpretations of the results. If σ2 = 0:

θ =

∑

i y(i)x(i)− (
P

i y(i))(
P

i x(i))

n
∑

i x(i)2 − (
P

x(i))2

n

(25)

= (1/n) ·
∑

i y(i)x(i)− ((1/n) · (∑i y(i)))((1/n) · (∑i x(i)))

(1/n) ·∑i x(i)2 − ((1/n)
∑

x(i))2
(26)

=
E(Y X)− E(Y )E(X)

E(X2)− (E(X))2
(27)

=
Cov(X, Y )

V ar(X)
(28)

α = (1/n)
∑

i

y(i)− θ(1/n)
∑

i

x(i) (29)

= E(Y )− θE(X) (30)

which are also the estimates of PNS method as well as by least squares.
If σ2 →∞:

θ → 4/4 = 1 (31)

α =

∑

i y(i)− θ
∑

i x(i)

n + 100σ2
(32)

→ 0 (33)

H3 / Problem 3.
1-NN border plotted with a thick line:
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H3 / Problem 4.

Bayes rule p(ω|x) = p(x|ω)p(ω)
p(x) .

Classification rule: when having observation x, choose class ω1 if p(ω1|x) > p(ω2|x) ⇔ p(x|ω1)p(ω1)
p(x) > p(x|ω2)p(ω2)

p(x)

⇔ p(x|ω1)p(ω1) > p(x|ω2)p(ω2).
Now the both data follow the normal distribution x|ω1 ∼ N(0, σ1) and x|ω2 ∼ N(0, σ2). Assume that σ2

1 > σ2
2 . See

the density function curves in the figure below where σ1 = 2.5 and σ2 = 0.7 as an example. The density function of a
normal distribution with mean µ and variance σ2 is

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2

Now the rule is

1√
2πσ1

e
− x2

2σ2
1 p(ω1) >

1√
2πσ2

e
− x2

2σ2
2 p(ω2) (34)

e
− x2

2σ2
1

e
− x2

2σ2
2

>
σ1

σ2

p(ω2)

p(ω1)
| ln on both sides (35)

( 1

2σ2
2

− 1

2σ2
1

)

x2 > ln
(σ1

σ2

p(ω2)

p(ω1)

)

(36)

x2 >
2 ln(σ1

σ2

p(ω2)
p(ω1)

)

( 1
σ2
2
− 1

σ2
1
)

(37)

In the figure below the density functions and class borders when using sample values σ1 = 2.5, σ2 = 0.7, P (ω1) =
0.5, and P (ω2) = 0.5, yielding x2 > 1.3536 and decision borders |x| = 1.1635. E.g., if we are given a data point x = 2,
we choose the class ω1.
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H3 / Problem 5.
Probability of “1” is p and that of “0” is 1−p. Then the probability of the vector “111010” is p·p·p·(1−p)·p·(1−p) =

p4(1− p)2.

a) There is a vector x = (x1, . . . , xd)T , which has d elements, and the number of ones is N .
Now for the class ω1, p(x|ω1) = pN (1− p)d−N and correspondingly for the class ω2, p(x|ω2) = qN (1− q)d−N

b) Suppose that q < p.
The classification rule: x belongs to ω1, if p(x|ω1)p(ω1) > p(x|ω2)p(ω2), or taking the logarithm ln p(x|ω1) +

ln p(ω1) > ln p(x|ω2) + ln p(ω2),
Substituting the density functions:

ln[pN (1− p)d−N ] + ln p(ω1) > ln[qN (1− q)d−N ] + ln p(ω2) (38)

ln pN + ln(1− p)d−N + ln p(ω1) > ln qN + ln(1− q)d−N + ln p(ω2) (39)

N ln p + (d−N) ln(1− p) + ln p(ω1) > N ln q + (d−N) ln(1− q) + ln p(ω2) (40)

N [ln p− ln(1− p)− ln q + ln(1− q)] > ln p(ω2)− ln p(ω1) + d ln(1− q)− d ln(1− p) (41)

N ln
(p(1− q)

q(1 − p)

)

> ln
(p(ω2)

p(ω1)

)

+ d ln
(1− q

1− p

)

| p(1− q)/(q(1 − p)) > 1→ ln(.) > 0 (42)

N >
[

ln
p(ω2)

p(ω1)
+ d ln

(1− q

1− p

)]

/
[

ln
(p(1− q)

q(1 − p)

)]

(43)
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