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SOLUTIONS TO EXERCISES 3

H3 / Problem 1.

See lectures slides, chapter 5. Given a data set X = (x(1),z(2),...,2(n)) and a model of a probability density
function p(z|f) with an unknown constant parameter vector §, maximum likelihood method (“suurimman uskotta-
vuuden menetelmi”) estimates vector  which maximizes the likelihood function: 7, = maxg p(X]6). In other words,
find the values of # which most probably have generated data X.

Normally the data vectors X are considered independent so that likelihood function is a product of individual terms
p(X|0) = p(z(1),2(2),...,2(n)|0) = p(x(1)|0) - p(x(2)|6) - ... p(x(n)|f). Given a numerical data set X, likelihood is
function of only . Because the maximum of the likelihood p(X|#) and log-likelihood In p(X|6) is reached at the same
value 6, log-likelihood function L(6) is prefered for computational reasons. While In(A - B) = InA + In B, we get
L(6) = Inp(X|0) = In[; p(=(1)|0) = 3=, np(=(5)]6).

Remember also that p(z,y|0) can be written with conditional probabilities p(z, y|6) = p(z)p(y|z, 6).

In this problem the model is y(i) = 6x(i) + (i) which implies €(i) = y(i) — 62(i). If there were no noise €, 6
could be computed from a single observation 8 = y(1)/z(1). However, now the error € is supposed to be zero-mean
Gaussian noise with standard deviation o: € ~ N(0,0), that is E(e) = 0, Var(e) = 2. This results to E(y(i)|z(i),0) =
0x(i) + E(e) = 0x(i) and Var(y(i)|z(i),0) = Var(e(i)). Hence (y(i)|z(i),0) ~ N(0z(i), o) the density function is
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The task is to maximize p(z, y|0) = p(z)p(y|z,0) w.r.t. 6. Assuming data vectors independent we get likelihood as
IL p(x(2)p(y(i)|a(é), 0). After taking logarithm the log-likelihood function is
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Maximizing L() is equal to minimizing its opposite number: ming 52z Y1 (y(i) — 62(i))? = ming 557 > r; (e(i))2.
This equals to least squares estimation (“pienimmiin neliGsumman menetelmi”) because of the certain properties of e
in this problem.
Minimum is fetched by setting the derivative w.r.t. § to zero (the extreme point):

which gives finally the estimate

H3 / Problem 2.
See lectures slides, chapter 5, and Problem 1. Bayes rule is
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Often only the maximum posterior estimate of 6 (MAP) is computed. Taking logarithm gives Inp(6|z) = Inp(z|6) +
Inp(f) — Inp(z), and the derivative w.r.t. 6 is set to zero: %Inp(z\ﬁ) + %Inp(ﬁ) = 0. Compared to ML-estimation
(Problem 1), there is an extra term {%lnp(é’).

In this problem we have also a data set X and now two variables 6 and a to be estimated. The model is y(i) =
a + 0z(i) + €(i), where € ~ N(0,0) as in Problem 1. Now E(y(i)|z(i), o, 0) = a + 0z(i), and Var(y(i)|z(i), o, ) =

Var(e) = 0. Thus y(i) ~ N(a + (i), o) and the likelihood function is
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Parameters have also normal density functions (“prior densities”)
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In Bayes MAP-estimation the log posterior probability to be maximized is Inp(z, y|c, 8) + Inp(a) + In p(6), where the
first term is the likelihood and the two latter terms prior densities:
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Hence, the task is
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First, maximize w.r.t. a,
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and similarly 6, using previous result of «,
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Some interpretations of the results. If o2 = 0:

Z'J(2>T(7) & J(U)(Z =(i))
>, (i) (ZHE(I))2

(1/n)-

E(YX)—
E(X?) -
Cov(X,Y)
Var(X)

(1/n) Zy )—0(1/n) ZL(i)
— BY) - 0B(X) '

which are also the estimates of PNS method as well as by least squares.

If 2 — oo:
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H3 / Problem 3.
1-NN border plotted with a thick line:

H3 / Problem 4.

Bayes rule p(w|z) = %

Classification rule: when having observation z, choose class w if p(wi|z) > p(ws|z) < p(x'l'«;zlz;(m) > pm;zlﬁ““”
& plalwr)p(wi) > p(alwz)p(ws).

Now the both data follow the normal distribution z|w; ~ N(0,01) and z|ws ~ N(0,02). Assume that 07 > 03. See
the density function curves in the figure below where o1 = 2.5 and o2 = 0.7 as an example. The density function of a
normal distribution with mean p and variance o is
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Now the rule is
(34)
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In the figure below the density functions and class borders when using sample values o1 = 2.5, 05 = 0.7, P(w1) =

5, and P(w2) = 0.5, yielding 22 > 1.3536 and decision borders |z| = 1.1635. E.g., if we are given a data point = 2,
we choose the class wi.

Two normal probablllty densny functlons
—0,= =25, P(oo) 0.5

..0,=07,P(w)=05

-1.163501.1635

H3 / Problem 5.
Probability of “1” is p and that of “0” is 1—p. Then the probability of the vector “111010” is p-p-p-(1—p)-p-(1—p) =
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a) There is a vector x = (z1,..., , which has d elements, and the number of ones is N.

Now for the class wy, p(z|lw1) = pN(l p)4=N and correspondingly for the class wy, p(z|wz) = ¢V (1 — )¢V

b) Suppose that ¢ < p.

The classification rule:  belongs to wi, if p(z|wi)p(wi) > p(z|wz)p(ws), or taking the logarithm Inp(z|w;) +
Inp(w1) > Inp(zlwsz) + Inp(w2),

Substituting the density functions:
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