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SOLUTIONS TO EXERCISES 2

H2 / Problem 1.
a) See the figure below.
b)

E{x} =
1

4

∑

x(i) =

[

5
4

]

Thus the normalized data matrix is X0 =

[

−3 0 1 2
−3 −1 1 3

]

c) The covariance matrix is Cx = 1
4X0X

T
0 = 1

4

[

14 16
16 20

]

The eigenvalues are computed from Cxu = λu, or by multiplying with 4,

[

14 16
16 20

]

u = µu where µ is 4 times λ.

(It may be easier to solve the equation if the coefficients are integer numbers).

We have determinant

∣

∣

∣

∣

14− µ 16
16 20− µ

∣

∣

∣

∣

= 0 which gives the characteristic equation (14 − µ)(20 − µ) − 256 = 0 or

µ2 − 34µ + 24 = 0. The roots are 33.28 and 0.72, hence the eigenvalues λ of the covariance matrix are these divided
by 4.

The eigenvector corresponding to the larger eigenvalue can be computed by

[

14 16
16 20

]

u = 33.28u which (after

some manipulation) gives u = [0.64 0.77]T .
The empty circles in the figure below are the projections onto 1D hyperplane (line), and 33.28/(33.28+0.72)≈ 97.9

% of variance is explained.
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H2 / Problem 2.
We can use the Lagrange optimization principle for a constrained maximization problem. The principle is saying

that if we need to maximize E{(wT x)2} under the constraint wTw = 1, we should find the zeroes of the gradient of

E{(wTx)2} − λ(wT w − 1)

where λ is the Lagrange constant.
We can write E{(wTx)2} = E{(wT x)(xT w)} = wT E{xxT }w because inner product is symmetrical and the E or

expectation means computing the mean over the sample x(1), ...,x(n), thus w can be taken out.
We need the following general result: if A is a symmetrical matrix, then the gradient of the quadratic form wTAw

equals 2Aw. It would be very easy to prove this by taking partial derivatives with respect to the elements of w. This
is a very useful formula to remember.

Now the gradient of the Lagrangian becomes:

2E{xxT }w− λ(2w) = 0

or
E{xxT }w = λw

This is the eigenvalue - eigenvector equation for matrix E{xxT }. But there are d eigenvalues and vectors: which one
should be chosen?

Multiplying from the left by wT and remembering that wT w = 1 gives

wT E{xxT }w = λ

showing that λ should be chosen as the largest eigenvalue in order to maximize wT E{xxT }w = E{y2}. This was to
be shown.
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H2 / Problem 3.
After convergence it must hold γ[yx − y2w] = 0. Because γ 6= 0, it follows that either y = 0 or x − yw =

x− (wT x)w = 0. In the former case, w becomes orthogonal to x because wTx = 0.
In the latter case, w becomes aligned with x. Denote w = αx and solve α: we have

x− (αxT x)αx = 0

which gives

α =
1

‖x‖

Then finally

w =
x

‖x‖

or w tends to the unit vector in the orientation of x.
(Actually, we can show that only the latter case is possible but it goes beyond elementary mathematics. For those

of you who want to know: From the original update equation, by multiplying both sides with xT , we have

xTw ← xTw + γ[yxTx− y2xT w]

or
xT w← xT w + γ[(xT x)(xT w)− (xT w)3]

So, the change in the value of xTw at one step of the algorithm is equal to γ[(xTx)(xT w)−(xT w)3]. If 0 < xTw < ‖x‖,
then the change is positive, meaning that xT w will increase. If on the other hand xT w > ‖x‖, then the change is
negative and xTw will decrease. In both cases, it will converge to ‖x‖, different from zero. )

H2 / Problem 4.
The likelihood function (supposing that given data samples x(i) are independent; function of λ only)

p(x|λ) =

n
∏

i=1

p(x(i)|λ) =

n
∏

i=1

λe−λx(i)

The log-likelihood:

L(λ) = ln p(x|λ) =
n

∑

i=1

[lnλ− λx(i)] = n lnλ− λ
n

∑

i=1

x(i)

Putting the derivative with respect to λ to zero:

d

dλ
ln p(x|λ) = n

1

λ
−

n
∑

i=1

x(i) = 0

gives the solution

1

λ
=

1

n

n
∑

i=1

x(i).

Thus the ML (maximum likelihood) estimate for λ is the inverse of the mean value of the sample.
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H2 / Problem 5.
The log-likelihood is

ln p(x|µ, σ2) = −
n

2
ln(2πσ2)−

1

2σ2

n
∑

j=1

[x(j) − µ]2.

The log prior probability for µ is ln p(µ) = const− 1
2µ2.

All the parts depending on µ in the Bayesian log posterior probability:

−
1

2σ2

n
∑

j=1

[x(j) − µ]2 −
1

2
µ2

Putting the derivative w.r.t. µ to zero:

0 =
d

dµ

(

−
1

2σ2

)

n
∑

j=1

[x(j) − µ]2 −
1

2
µ2

= −
1

2σ2

n
∑

j=1

2[x(j)− µ](−1)− µ

gives
n

∑

j=1

x(j)− nµ− σ2µ = 0

which finally gives

µ =
1

n + σ2

n
∑

j=1

x(j).

The interpretation is as follows: if the variance σ2 of the sample is very small, then µ is very close to the sample
mean 1

n

∑n

j=1 x(j) because then the sample can be trusted.

On the other hand, if σ2 is very large, then µ becomes close to zero which is the prior assumption. Then the sample
cannot be trusted and the prior information dominates.
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