Datasta Tietoon, Autumn 2007

EXERCISE PROBLEMS 2

[Nov 16th 2007, Nov 21st 2007]

H2 / 1. (Principal component analysis)

We have the following data matrix **X**:

 $\mathbf{X} = \begin{pmatrix} 2 & 5 & 6 & 7 \\ 1 & 3 & 5 & 7 \end{pmatrix}$

a) Plot the columns of **X** in the (x_1, x_2) - coordinate system

b) Normalize **X** to zero mean by subtracting from the columns their mean vector

c) Compute the covariance matrix \mathbf{C} and the eigenvector corresponding to its largest eigenvalue. Plot the eigenvector in the coordinate system of item a). How would you interpret the results according to PCA?

H2 / 2. (Principal component analysis)

Assume that \mathbf{x} is a zero mean random vector and we have a sample $\mathbf{x}(1), ..., \mathbf{x}(n)$. Assume \mathbf{w} is a unit vector (such that $\|\mathbf{w}\| = 1$) and define $y = \mathbf{w}^T \mathbf{x}$. We want to maximize the variance of y given as $E\{y^2\} = E\{(\mathbf{w}^T \mathbf{x})^2\}$. Prove that it will be maximized when \mathbf{w} is the eigenvector of the matrix $E\{\mathbf{x}\mathbf{x}^T\}$ corresponding to its largest eigenvalue.

H2 / 3. (On-line-principal component analysis)

In the lectures, the so-called SGA algorithm was introduced for computing the eigenvector defined in the previous Exercise 2:

$$\mathbf{w} \leftarrow \mathbf{w} + \gamma [y\mathbf{x} - y^2\mathbf{w}]$$

For simplicity, assume that vector \mathbf{x} is a constant, $y = \mathbf{w}^T \mathbf{x}$ and the learning rate γ is a (small) constant. Where does the vector \mathbf{w} converge in this algorithm?

H2 / 4. (ML-estimation)

Derive the maximum likelihood estimate for the parameter λ of the exponential probability density

$$p(x|\lambda) = \lambda e^{-\lambda}$$

when there is available a sample x(1), ..., x(n) of the variable x.

H2 / 5. (Bayesian estimation)

We are given a sample x(1), ..., x(n) of a variable x known to be normally distributed

$$p(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

We have good reason to assume that the average value μ is close to zero. Let us code this assumption into a prior density

$$p(\mu) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\mu^2}.$$

Derive the Bayes MAP estimate for the value μ and interpret your result when the variance σ^2 changes from a small to a large value.