
Datasta Tietoon, Autumn 2007

EXERCISE PROBLEMS 2 [ Nov 16th 2007, Nov 21st 2007 ]

H2 / 1. (Principal component analysis)
We have the following data matrix X:

X =

(

2 5 6 7
1 3 5 7

)

a) Plot the columns of X in the (x1, x2) - coordinate system
b) Normalize X to zero mean by subtracting from the columns their mean vector
c) Compute the covariance matrix C and the eigenvector corresponding to its largest eigenvalue. Plot the eigenvector

in the coordinate system of item a). How would you interpret the results according to PCA?

H2 / 2. (Principal component analysis)
Assume that x is a zero mean random vector and we have a sample x(1), ...,x(n). Assume w is a unit vector (such

that ‖w‖ = 1) and define y = wTx. We want to maximize the variance of y given as E{y2} = E{(wTx)2}. Prove that
it will be maximized when w is the eigenevctor of the matrix E{xxT } corresponding to its largest eigenvalue.

H2 / 3. (On-line-principal component analysis)
In the lectures, the so-called SGA algorithm was introduced for computing the eigenvector defined in the previous

Exercise 2:
w ← w + γ[yx− y2w].

For simplicity, assume that vector x is a constant, y = wTx and the learning rate γ is a (small) constant. Where does
the vector w converge in this algorithm?

H2 / 4. (ML-estimation)
Derive the maximum likelihood estimate for the parameter λ of the exponential probability density

p(x|λ) = λe−λ

when there is available a sample x(1), ..., x(n) of the variable x.

H2 / 5. (Bayesian estimation)
We are given a sample x(1), ..., x(n) of a variable x known to be normally distributed

p(x|µ, σ) =
1√
2πσ

e
−

(x−µ)2

2σ2 .

We have good reason to assume that the average value µ is close to zero. Let us code this assumption into a prior
density

p(µ) =
1√
2π

e−
1
2µ2

.

Derive the Bayes MAP estimate for the value µ and interpret your result when the variance σ2 changes from a
small to a large value.


