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Vocabulary

N number of nodes of the graph
` average distance between nodes
D diameter of the graph
d is the number of dimensions of the lattice
z number of connections each node has – also called the
coordination number of a graph
C clustering coefficient of the graph
ξ characteristic length-scale of a small-world model
p is the probability of creating a link between two vertices in
small-world model
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Small-world phenomenon

Definition
A network is a small world network when two arbitrary nodes of
the network are connected with a short chain of intermediate links.

Study of the distribution of path lengths in a social network
(Milgram 1967)

Letters addressed to a stockbroker in Boston, Mass. divided
to random people in Nebraska
To be passed along to a first-name acquaintance possibly
nearer to the recipient in social sense
The letters reached the recipient on average six steps
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Random graph model

First model of a small world
Very simple model of social network (Erdös and Rènyi, 1959)
N nodes, 1

2Nz edges between randomly drawn pairs of nodes
Shows small-world effect
Diameter of the graph increases slowly with the system size N:
D = log(N)

log(z)
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Why a random graph is not enough?

Clustering
Real-world graphs show clustering effects
Your friends are usually friends with each other as well
Random graph does not have clustering properties

Network C Crand
movie actors 0.79 0.00027

neural network 0.28 0.05
power grid 0.08 0.0005

Table: (Excerpt of Table 1 in Newman 2000) The clustering coefficients
C for three real-world networks and the value for C in a random graph
with the same parameters.
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Background
Model of Watts and Strogatz

Motivation and background

How to balance between
the small-world properties i.e. the slow increase of path length
with system size and
the clustering effect?

Opposite of a random graph: a completely ordered lattice
1 . . . n dimensions
Clustering coefficient C = 3(z−2d)

4(z−d) tends to 3
4 for z � 2d

No small-world effect – in 1D case, average distance grows
linearly with system size
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Model of Watts and Strogatz

Watts and Strogatz model from 1998
Balances between the clustering property of a regular lattice
and small-world properties of a random graph

Creation of a small-world graph
Begin with a low-dimensional regular lattice
Randomly rewire some of the links with a probability p
For small p a mostly regular graph is produced
Small-world properties are obtained through the randomly
wired links
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Model of Watts and Strogatz
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Analysis of the small-world model

Numerical analysis indicates that the small-world model shows
the log-increase of average path length and clustering
properties simultaneously.
A summary of some analytical results follows.
We want to measure the average path length (or vertex-vertex
distance) ` and find out what is the shape of its distribution.
When we balance between ordered and random graph how
does the transition from large-world to small-world occur?
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Variation by Newman and Watts (1999)

Most analytical work has been done using a variation of Watts and
Strogatz model
Usually both models are referred as small-world models

Differences to Watts-Strogatz model
Added shortcuts
No links removed from the underlying lattice
No disconnected parts of the graph
Easier to analyze as no distance is infinite
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Findings by Barthémély and Amaral

Average vertex-vertex distance obeys ` = ξG (L/ξ), where ξ is
the length-scale for the model and G (x) a universal scaling
function.
ξ is assumed to diverge in the limit of small p according to
ξ ∼ p−τ

Based on numerical simulations, they assumed that τ = 2
3

Barrat (1999) disproved the numerical result and concluded
that τ cannot be less than 1
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A single length-scale of a small-world graph
Results from Newman and Watts 1999

Newman and Watts showed using numerical simulation and series
expansion that

there is a single, non-trivial length-scale in the small-world
model that depends on the probability p,
given by ξ = 1

(pzd)1/d in general case

Definition
The average vertex-vertex distance scales with the system size
according to
` = L

2dz F (pzLd), where F (x) is a universal scaling function.
ξ diverges as p → 0
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Interpretation of the average path length

The average path length, `, is defined by a single scalar
function of a single scalar variable, if ξ � 1
If we know the form of this function, we know everything.
True only for small p, i.e. when most person’s connections are
local.
In the limit p → 0 model is a ’large-world’ and typical path
length tends to ` = L

2z

Scaling form shows that we can go from large-world to
small-world either by increasing p or increasing system size
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Interpretation of x and F (x)

Average path length equation again

` =
L

2dz
F (pzLd)

x is twice the average number of shortcuts for a given value of
p
F (x) is the average fraction by which the vertex-vertex
distance is reduced for a given value of x
It takes about 51

2 shortcuts to reduce the average
vertex-vertex distance by a factor of two, and 56 to reduce it
by a factor of ten.
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Further analysis of the results

In the limit of large p, the small-world models becomes a
nearly random graph
` should scale logarithmically with system size L when p is
large and also when L is large
When small L or p, ` should scale linearly with L
Cross-over from small- and large-x in the vicinity of L = ξ

Limiting forms for F (x)

F (x) =

{
1 for x � 1
(log x)/x for x � 1
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Open questions in the small-world models

Actual distribution of path lengths in the small-world model
The calculation of the exact average path length `

Exact analytical calculations very hard for the small-world
model
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Some attempts towards the distribution and average path
length

The form of the scaling function calculated for d = 1 and
small or large x but not for x ' 1 (Newman et al. 2000)
F (x) = 4√

x2+4x
tanh−1 x√

x2+4x
In addition, a mean-field approximation was used to solve the
distribution
Can be used as a simple model of a spread of disease
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Models using small-world graphs
Models for disease spread

Dynamical systems defined on small-world graphs

Several studies use small-world structures instead of regular lattices
in dynamical systems problems:

Cellular automata: density classification becomes easier
In simple games: e.g. multi-player Prisoner’s dilemma is more
difficult
In oscillators: Small-world topology helps oscillators to
synchronize
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Models using small-world graphs
Models for disease spread

Other applications

Solution for the ferromagnetic Ising model for d=1 with a
phase transition in a finite temperature
Small-world graph as a model of a neural network: able to
produce fast responses to external stimuli and coherent
oscillation.
Model of species coevolution
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Models using small-world graphs
Models for disease spread

Disease spread in small-world graphs

Small-world graphs are suitable for modeling spread of disease (or
information) in a population

First idea: use the approximate distribution of ` as a simple
model.

Disease spreads from neighborhoods of the infected people
Number of people n infected after t time steps: those t steps
away from the initial carrier.

More complex idea: Only a certain fraction q is susceptible
What does the fraction q need to be to make disease an
epidemic?
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The Kasturirangan model
The Albert and Barabási model
The Kleinberg Model

Multiple scales in small world graphs, (Kasturirangan,
1999)

Definition
The small-world phenomenon arises because there are few ’hubs’ in
the network that have unusually high number of neighbors, not
because a few long-range connections.

Shows small-world effects even
with one sufficiently-connected hub

For a graph with one single central
hub, it is possible to calculate the
scaling function exactly
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The Kasturirangan model
The Albert and Barabási model
The Kleinberg Model

The Albert and Barabási model

Network model based on their observations on the World Wide
Web

Small-world models operate only on sparse graphs.
Highly connected sites dominate the Web.
Distribution of the coordination numbers of sites is not
bimodal but follows power-law.
Does not show clustering which is present in the Web as well.
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The Kasturirangan model
The Albert and Barabási model
The Kleinberg Model

Creating an Albert and Barabási network

Network creation algorithm
Start with a random network
Take two vertex at random and add a link if it brings the
distribution of z nearer to power-law
Continue until correct coordination numbers reached
Still otherwise as random graph

The network could also be created by generating N vertices with
lines out of them according to power-law distribution and joining
lines randomly until none are left.
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The Kasturirangan model
The Albert and Barabási model
The Kleinberg Model

The Kleinberg model

This model was discussed in detail in the previous lecture
Comment on Watts-Strogatz model: No simple algorithm for
finding the path using only local information
For Kleinberg’s model there is

a simple algorithm for finding a short path using only local
information
for those structures for which the exponent of the power law is
the dimension of the grid

Comments from the article:
For other values of r than r = d path-finding becomes a hard
task.
There is more to the small-world effect than the existence of
short paths.
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Conclusions

Overview on some theoretical work on the small-world
phenomenon
Analytic and numerical results for Watts-Strogatz model and
its variants
Continuing research to determine the exact structure
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Most important points

Small-world network behavior different from either regular
graph or a random one
Transition from large-world to small-world implication: disease
or information spreads first as a power of time, then changes
to exponential increase and flattens off when the graph
becomes saturated
Dynamical systems behave differently on small-world graphs
than on regular lattices
There are other characteristics in addition to small-world
effect: e.g. scale-free distribution
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