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Main problem

Clustering problem

Figure: The random (left) and clustered adjacency matrix.
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Generation models
Used as an artificial input data in clustering algorithms for
evaluating and benchmarking.
e.g.

I Uniform random graph (the Gilbert model).
I The planted `-partition model.
I The relaxed caveman graph.

Figure: A random graph (left) and a relaxed caveman model.
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Desirable cluster properties

No single definition.
I Vertices should be connected with paths, which are internal to

the cluster.
I degext (v) = 0⇒ a good cluster.
I Homogeneity within clusters, heterogeneity between clusters.
I ⇒ Compactness.
I ⇒ Density.
I ⇒ Integrity.
I Membership in several clusters - fuzzy clustering.
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Similarity
Distance.

I Euclidean distance.
I Manhattan distance.
I tf-idf.
I Edit distance.
I etc.

Similarity.
I Cosine similarity.
I Jaccard index, Jaccard similarity coefficient.

Adjacency-based measures.
I Overlap of neighbourhoods.
I Pearson correlation.

Connectivity measures.
I Number of paths between each pair of vertices.
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Fitness

Density measures.
I Decision problem: find the subset S ⊆ V such that |S | = k

and the density δ (S) ≥ ξ.
I Additional problems: determine the k and the ξ.
I Often NP-hard or NP-complete.



Graph Clustering

Identification of clusters

Fitness

Fitness

Cut-based measures - the independence of a subgraph.
I The cut size c (e, V \e) - the smaller, the better.
I Problem with cuts: important (large weighted) edges vs. unimportant

(small weighted) edges.
I The relative cut size - the expansion:

“The expansion of a graph is the minimum ratio over all cuts of the graph of the
total weight of edges of the cut to the number of vertices in the smaller part
created by the cut.”

⇒ The larger the expansion of the clustering, the higher its quality.
I Weighted cuts - the conductance.

“Give greater importance to vertices that have many similar neighbours and lesser
importance to vertices that have few similar neighbours.”
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Fitness

Local fitness.
I The Cheeger ratio: the ratio of the cut size of the cluster to

the minimum of the sums of degrees either inside the cluster
or outside it.

I Combinations of local and relative density measures.
I The higher the internal degree of a vertex, the better it fits to

the given cluster.
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Complexity

Some examples

Clustering with respect to a distance function.
I The minimum k-clustering problem: partition data set into k

clusters such that the maximum intercluster distance is
minimized. ⇒ Approximation factor is two.

I The minimum k-centre problem: construct a set of centres
such that the maximum distance from a vertex to the nearest
centre is minimized. ⇒ Approximation factor is two.

I The minimum k-median problem: the sum of the distances
from a vertex to the nearest centre is minimized while keeping
the order of the centre set fixed. ⇒ Approximation factor is
near two, unless (in given data set) P=NP.

I Perhaps the best known method is the k-means algorithm (in
appendix). ⇒ NP-hard.
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Some examples

Easy to fool methods: e.g. minimum diameter, k-center, k-median,
minimum sum.

Figure: Diameter optimization (left) and 2-median optimization.
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Iterative or online clustering

I Cluster all of the data elements at once vs. iteratively one
element at the time.
⇒ Obviously “all at once” -algorithms are not well for large
data sets.

I Online clustering = clustering algorithm operates one datum
at the time.
⇒ Partial clustering.
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Hierarchical clustering
I Top-level cluster is composed of subclusters, and so on.
I The root cluster contains at most all of the data, and each of

the leaf clusters contains at least one data element.
⇒ A dendrogram.

Figure: Examples of hierarchical structure and a dendrogram
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Hierarchical clustering

I Top-down hierarchical algorithms: split the dataset iteratively
or recursively into (two or more) smaller clusters, divisive
clustering algorithms.

I Bottom-up hierarchical algorithms: start with each data
element in its own singleton cluster or another set of small
initial clusters, iteratively merging smaller clusters into larger
ones, agglomerative clustering algorithms.

I The stopping condition.

⇒ NP-hard.
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Divisive global clustering

Cuts

Split graph into two by removing a cut.
I The relative order of subgraphs.
I When to stop splitting.
I Minimum bisection.
I `-partition, `-bisection.
I e.g. minimum cuts, low conductance, the Fiedler vector to find

smallest normalized cut, SVD, etc.
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Divisive global clustering

Maximum flow

Connection between maximum-flow and minimum-cut problems:
“The maximum amount of flow is equal to the capacity of a minimal cut, i.e. between
any two vertices, the quantity of flow from one to the other cannot be greater than the
weakest set of edges somewhere between the two vertices.”

⇒ A minimum-cut tree.
I e.g. Ford-Fulkerson algorithm.
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Spectral methods

Quite close relation to many other methods, as seen before (e.g. to
cuts).

I Zhi-rong will present spectral clustering next time.
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Divisive global clustering

Betweenness

I Betweenness: the number of shortest paths connecting any
pair of vertices that pass through the edge.

I Node-betweenness: for each vertex node-betweenness is the
number of shortest paths in the graph that pass through that
vertex.

I Quite often algoritms to compute betweenness operate in
O (n ·m) time.

I The concept of modularity, many definitions: e.g. number of
edges within groups minus expected number of edges within
groups (Newman).

I e.g. Girvan-Newman algorithm (in appendix).
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Divisive global clustering

Voltage and potential

The graph as a circuit that has a unit resistor on each edge. (ref.
the 3rd lecture.)

Figure: A graph as an electric circuit.

I Cluster the vertices based on the potential differences.
I Circuit analysis tools, e.g. SPICE (e.g. http://www.5spice.com/)
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Voltage and potential

I Where to place battery when structure of a graph is not known
a priori?
⇒ Place it randomly and do the averaging.
⇒ Pick a seed vertex and a “far away” sink vertex.
⇒ The discrete Dirichlet problem ⇒ The Fiedler vector.

I e.g. Wu−Huberman algorithm.
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Divisive global clustering

Markow chains and random walks

The components of the eigenvector corresponding to the second
eigenvalue of the transition matrix of a random walk on a graph
serve as “proximity” measures for how long it takes for the walk to
reach each vertex. Two vertices in the same cluster should be
“quickly reachable” from each other.

Figure: A two−cluster graph.
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Other methods

One possible method as an example.
I Find the histogram of the density function.
I Filter the histogram by convolution.
I Use the output to split the graph in two.
I Continue iteratively.
I (http://www.tulip−software.org/)
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Agglomerative global clustering

Iteratively merge clusters and continue until some threshold or a
desired number of clusters is reached.

I The pairwise nearest neighbours method.
I Modularity optimization approach ⇒ construct the full cluster

hierarchy and then select a clustering from the resulting tree
maximizing modularity.
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Local clustering

Local clustering: clusters are computed one at a time based on only
partial views of the graph topology.

I Symmetrical vs. asymmetrical clustering.
I Local availability: the adjacencies are known and there is

direct access to the neighbouring vertices (in wider sense: also
direct access to the second neighbours)

I Lower costs (e.g. time and storage requirements).
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Local search

Find near-optimal solutions among large, complex sets of solution
candidates.

I Heuristic or/and probabilistic algorithms.
I State space: the set of solution canditates (i.e. states).
I A neighbourhood relation: examine solution candidates one by

one and then move to a neighbouring candidate.
I A fitness function: measures the quality of the solution of a

state.
I A fitness function decides where the search will proceed - e.g.

to the neighbour with the best fitness (greedy algorithms).
I e.g. hill-climbing, tabu search, simulated annealing.
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Summary

I Many ways and methods to do clustering.
I Many application areas.

I Problems
I Parameters.
I Runtime and memory consumption.
I Evaluation of clusterings.
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Some algorithms

The k-means algorithm I

1. Place k points into the space represented by the objects that
are being clustered. These points represent initial group
centroids.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions
of the k centroids.

4. Repeat steps 2 and 3 until the centroids no longer move. This
produces a separation of the objects into groups from which
the metric to be minimized can be calculated.
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Hierarchical clustering algorithm I

1. Start by assigning each object to a cluster each containing just
one item. Let the distances (similarities) between the clusters
be the same as the distances (similarities) between the objects
they contain.

2. Find the closest (most similar) pair of clusters and merge them
into a single cluster.

3. Compute distances (similarities) between the new cluster and
each of the old clusters.

4. Repeat steps 2 and 3 until all objects are clustered into a
single cluster.
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Some algorithms

Girvan-Newman algorithm I

1. The betweenness of all existing edges in the network is
calculated first.

2. The edges with the highest betweenness are removed.

3. The betweenness of all edges affected by the removal is
recalculated.

4. Steps 2 and 3 are repeated until no edges remain.
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