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Introduction
● Detection of important events (hightlights) in Formula1 

races
● Fusion of evidence from different modalities:

– audio
– video

● Using superimposed text in video signal for powerfull 
querying



  

Introduction
● Audio

– detection of excited speech
● Video

– capturing high level concepts (specific highlights) 
based on low-level features

● Superimposed text
– using domain specific features for complex queries



  

Processing audio signal
● Audio signal from the car race is complex and 

ambiguous
● Filter out unneccesary noise, car engines, crowd, etc. 

leaving final audio with only speech
● Goal: 

– find segments of excited speech in filtered signal
– recognize domain specific keywords

● Formula1 - pit-stop, crash, passing



  

Processing audio signal
● Detection of speech segments based on following low 

level features
– Short time energy (STE)
– Mel-Frequency Cepstral Coefficients
– Pitch
– Pause rate

● Divide audio singal into suitable resolution:
– frames (10ms) and segments (100ms)



  

Processing audio signal
● Idea:

– For detecting speech segments use Short-Time 
Energy and MFCC

– Pitch and pause rate are responsible for detection 
of excited speech

● All features are used together (not in steps)



  

Speech sequence detecion

Short-term energy calculations for 1000 audio frames (source: Blanken)



  

Keyword spotting
● Focus on recognizer for limited number of words as it 

gives less false alarms then general recognizer
● 30 in case of Formula1 racing
● Based on finite state grammar



  

Detection of excited speech
● Choice of features and calculations
● Model used:

– Bayesian network (BN)
– Dynamic Bayesian network (DBN)

● Influence of network structure
● For DBN:

– influence of temporal dependencies



  

Choice of features
● For splitted signal in segments, derive many features:

– keywords (f1)

– pause rate (f2)

– average value of STE (f3)

– dynamic range of STE (f4)

– average MFCC (f7)
– ...



  

Bayesian network
● Selected features are used as input to this probabilistic 

framework, and are considered as evidence nodes 
(observed variables)

● Dependencies between these variables are captured 
with hidden nodes (stochastic variables)



  

Dynamic Bayesian network
● Dynamic BN can deal with time aspect
● Stochastic variables may depend on observed 

(stochastic) variables from previous time segment 
● Satisfies first order Markov property
● In Bayesian network dependencies from segments are 

not allowed. Only within one time segment and 
between observed and stochastic variables. 



  

(Dynamic) Bayesian network
● Conditional probabilities are learned from the training 

set for both types of networks
● EM is used to find these conditional probabilities



  

Influence of network structure

First solution for connections between nodes in BN (source: Blanken)
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Influence of network structure

Second solution for connections between nodes in BN (source: Blanken)
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Influence of network structure

Temporal dependencies between hidden nodes for DBN (Source: Blanken)
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Results
● Training set: 300s from audio signal, in 3000 samples 

of 100ms
● For DBN same 300s into 12 segments of 25s 
● Processing output values for BNs

Network
structure BN (type 1) BN (type 2) DBN (type 1)

Precision 60% 54% 85%
Recall 66% 61% 81%



  

Influence of temporal dependencies
● Specifying different temporal dependencies between 

stochastic nodes gives different results
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Another way of specifying temporal dependencies (source: Blanken)



  

Results

Race German GP Belgian GP USA GP
Precision 85% 77% 76%
Recall 81% 79% 81%

● Fully connected (parametrized) dependencies gives 
best results and its performance is shown on other 2 
races for evaluation



  

Analyzing image stream
● Some highlights can be missed if using only audio 

signal
● Using low-level video features (color-histogram, 

dominant color, shape moments) to further improve 
results

● Focus on concept and domain of racing to extract 
specific events: passing, start of race, fly-outs

● Problems
– replay sections
– shot division



  

Motion
● Motion information is based on block-matching or 

optical flow techniques
– low-level and extracted from motion vectors
– high-level (camera motion - zooming, panning, 

tilting)
● Optical flow from motion vectors formed from pixel 

colors used in DBN



  

Shot segmentation

HD H t , H t−1=∑
i=1

N H t i −H t−1i 
2

H t i

● Sequences of more or less same content based 
frames

● Color histogram difference (N - number of colors in 
frame)

● Setting appropriate threshold for HD gives good 
results



  

Replay detection
● Detecting word 'Replay' in image frames

– easy, but differs for every race
● Digital Video Effects (DVE) 

– special sequences marking start and end of replay 
sections 

– must be learned for every race
● One easy and fast way

– simple RGB color change detection on central part 
of image frame (feature f12)



  

Image 'features' 1
● Start of race

– defined by amount of motion and red lights on 
semaphore

– detection of motion based on pixel color difference 
for 3 colors: red, green and blue (f13)

– measuring the amount of red light with filtering the 
image for red color (f14)



  

Image 'features' 2
● Passing of another car

– detecion based on motion histograms from 
consecutive still images

– pixel-color difference, same as for start (f13) and 
amount of motion (f17)



  

Image 'featues' 3
● Fly-outs

– accompnied with lof of dust and sand
– find out if there is dust or sand in images, looking 

for dominant colors
– first find out the dominant color based on several 

still images
– for actual evidence use filtered RGB images and 

calculate the amount of dominant colors
● sand f15
● dust f16



  

Highlight detection
● Training on 6 sequences of 50 seconds of 1 race

Context Start Fly-out Passing EA

Highlight

f12 f11 f14 f15 f16 f17

f13

Audio-visual DBN for one time slice (source: Blanken)



  

Results

Audio/video DBN Ger.GP Bel.GP USA GP
Highlights Precision 84% 43% 73%

Recall 86% 53% 76%

Start Precision 83% 100% 100%
Recall 100% 67% 50%

Fly-out Precision 64% 100% -
Recall 78% 36% -

Passing
Precision 79% 28%
Recall 50% 31%



  

Superimposed Text (ST)
● Text imposed in video signal for better understanding 

of its content
● Differs from scene text (billboards, text on vehicles...)
● Process

– detection of superimposed text - regions
– refinement of detected text
– recognition



  

(ST) Detection
● Superimposed text has certain spatial properties

– specific width/height
– duration of appearance

● There properties are of course domain specific, and 
will have different position, font, etc.

● Text region
– same text on the same position in image over 

several frames, in other words
– horizontal rectangular structure of clustered sharp 

edges 
– use horizontal differential filtering



  

(ST) Detection
● Exploiting domain of video signal

– in Formula1 races these text regions are in the 
bottom of the image and shaded (season 2000)

– check color features of bottom pixels
● Further

– not many words appear in text that are displayed in 
the same font



  

(ST) Refinement
● Binarization on text region to make text character 

stand out more based on intesities
● Then filter and interpolate

– clean, clear and big characters
● Use word recognition phase, insted of character 

recognition - faster
● Words are defined as sequence of characters close to 

each other (pixel distance)



  

Example of ST extraction
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(ST) Recognition

PD=∑
 x , y

I ref x , y  I extr x , y 

● Based on pattern recognition
1. extract reference patterns for each word (name of 

driver, team, etc)
2. split words into categories having different word 

length
3. matching - use pixel difference metric

● Select a pattern with largest pixel difference and 
above specified threshold



  

Integrated querying
● Combining highlight detection with DBNs and pattern 

matching of superimposed text, possible queries are:
– 'Driver A takes first position'
– 'Driver B flying out on 10th lap'
– 'Driver C in pit-stop'

● The results for these queires are obtained as 
highlights where those video sequences are marked 
having certain imposed text in them



  

Summary
● Automatic derivation of high level video content based 

on raw video data using (Dynamic) Bayesian networks
● Experiments on Formula1 races with audio, video and 

superimposed text
● Influence of networks' structure and temporal 

dependencies for DBN's
● Use of superimposed text llows powerfull queries for 

extraction of highlights in video signal
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