Multimedia Retrieval Ch 5 Image Processing

Anne Ylinen

Agenda

- Types of image processing
- Application areas
- Image analysis
- Image features

- Image Acquisition
 - Camera
 - Scanners
 - X-ray imagers
 - Computer tomography (CT)
 - Magnetic resonance scanners (MR)
 - Ultra sound devices (US)

- Image Restoration
 - Geometric distortions
 - Noise
 - Unsharpness

- Image Reconstruction
 - using models
 - different viewpoint
 - another imaging device

Image Enhancement Contrast enhancement amplitude scaling ■ contrast modification Histogram normalization nonadaptive histogram modification adaptive histogram modification Edge enhancement ■ linear edge crispening statistical differencing

- Image Registration
 - Rigid registration
 - Non-rigid registration
- Used in medical applications, cartography, face recognition, etc.

- Image Compression, Storage and Transmission
 Lossless
 - image can be exactly reconstructed
 - Lossy
 - approximate reconstruction

- Image Analysis
 - Image analysis aims to generate a description of the image or of objects present in the image.

Application Areas

- Medical Imaging
 - MR, CT, US
- Geo Information Systems, Satellite, Aerial photography and Cartography
- Biometry
 - Face and fingerprint recognition, handpalm recognition, tracking people
 - feature-based and holistic approaches
- Optical Character Recognition
- Industrial Vision
- Multimedia and Image Databases

Image Analysis

- extract information from an image
 - detection
 - classification
 - parameter estimation
 - structural analysis

Image Analysis

Image Analysis

- Image analysis task
 - the selection of the features
 - the representation of the models
 - the matching criterion
 - the selection strategy

Image

- 2-dimensional signal
- represented by a matrix F of pixels of N rows and M columns
- A pixel value f(n,m) is an intensity or a vector of 3 RGB components
- mathematical operations are possible e.g. derivative and Fourier transformation

- Pixel Features
 - Neighborhood and Image filtering
 - each pixel an individual feature
 - neighboring pixels grouped together
 - used to obtain higher level features

- Scale space and derivatives
 - scale at which objects are seen in an image depends on the distance between object and camera
 - scale space theory for handling image structures at different scale
 - derivatives important for edge detection, point feature detection, and so on

Texture

- small elementary pattern repeated periodically or quasiperiodically
- geometric or radiometric pattern
- important clues for segmenting the image
- typified by
 - the distance over which the patter is repeated
 - the direction in which the pattern is repeated
 - the properties of the elementary pattern
- co-occurrence matrices

- Point Features
 - Interest points
 - corner points and spots
 - video tracking, stereo matching, object recognition
 - Harris corner detector

- Harris corner detector
 - image I(x,y) and sifted image I(x+u, y+v)
 - Gaussian window function $w(x,y) E(u,v) \cong au^2 + bv^2 + 2cuv$
 - E(u,v) should change fast for small sifts of (u,v)

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u, y+v) - I(x,y)]^{2}$$

Image Features $E(u,v) \cong [u,v]M\begin{bmatrix} u\\ v \end{bmatrix}$

where

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

 λ_1, λ_2 eigenvalues of M $R = \det M - k(traceM)^2$ $\det M = \lambda_1 \lambda_2$ $traceM = \lambda_1 + \lambda_2$

- *R* depends only on eigenvalues of M
- *R* is large for a corner
- *R* is negative with large magnitude for an edge
- |*R*| is small for a flat region

sourse(www.wisdom.weizmann.ac.il/~deniss/vision_spring04/files/InvariantFeatures.ppt)

Line elements

- line segments have a width in the image equal to the scale of the image, Gaussian like profile across the line
- calculate the second derivative in the direction orthogonal to the gradient vector
- more stable result is obtained by approximating the neighborhood of each candidate line element by quadratic surface:
- (n,m) is the position of the candidate line element

$$f(n-k,m-l) \cong f(n,m) + ak^2 + bl^2 + 2ckl$$

using Taylor expansion

$$f(n-k,m-l) \cong f(n,m) + \begin{bmatrix} k & l \end{bmatrix} H \begin{bmatrix} k \\ l \end{bmatrix}$$

where

$$H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix}$$

- λ_1, λ_2 are eigenvalues of H
- for true line element, one eigenvalue should be large and the other small

- Edge elements
 - stepwise transition in intensities
 - neighboring edge elements linked to gether form an edge segment
 - gradient is large at the position of an edge
 - Gradient-based methods
 - Laplacian-based methods
 - Canny's method

- Canny's method
 - 1. Smooth the image with Gaussian filter $g(x,y)=g_c(x,y)*f(x,y)$ where

$$g_c(x, y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

where σ represents the width of the Gaussian distribution

2. Compute the second derivative in the gradient direction

$$\frac{\partial^2 g}{\partial n^2} = \frac{g_x^2 g_{xx} + 2g_x g_y g_{xy} + g_y^2 g_{yy}}{\sqrt{g_x^2 + g_y^2}}$$

3. Find zero crossings of the second derivative

- Pros:
 - One pixel wide edges
 - Edges are grouped together (often good for segmentation)
 - Robust against noise!
- Cons:
 - Complicated to understand and implement
 - Slow

References

- Blanken et al, Multimedia Retrieval, 2007, Springer
- Pratt, W: Digital Image Processing, 2001, John Wiley & Sons INC
- Bovik, A: Handbook of Image & Video Processing, 2000, Academic Press
- Castelman, K: Digital Image Processing, 1996, Prentice Hall
- Harris, C: A Combined Corner and Edge Detector, 1988,