Support Vector Machines and Kernel Methods

T-61.183 Special Course in Computer and Information Science III, Spring 2003 (4 cr)

Prof. Juha Karhunen
Helsinki University of Technology
General information

- The course is based on selected parts of the book

 B. Schölkopf and A. Smola: Learning with Kernels

- Subtitle: *Support Vector Machines, Regularization, Optimization, and Beyond.*

- Publisher: The MIT Press. Price: 60 US dollars.

- About 640 pages ⇒ We shall skip some parts of the book in this course.

- Comments and reviews on the book have been quite positive.

- The book is mathematically fairly demanding and theoretical.

- We shall skip advanced special topics and overly theoretical portions of the book in our course.
• Home page of the book:
 http://www.learning-with-kernels.org/

• There is plenty of additional useful material available.

• A tutorial review article “An introduction to kernel-based learning algorithms” by Prof. K.-R. Müller et al., IEEE Trans. on Neural Networks, March 2001.

• This article is a kind of summary of the seminar book.

• It is delivered to you, and you should read the article; it makes easier for you to follow the seminar later on.

• Before reading this article, please read Chapter 1: A Tutorial Introduction of the book.

• It tries to explain the central ideas in a simple manner.

• Chapter 1 is partly overlapping with the review article, which covers
using rather condensed style more material.

- Prof. Müller’s slides based on these tutorial materials are available on the web page of the course.

- Concise but clear presentation.

- Focuses on classification learning, good for beginners.

- Useful web sites containing articles, MATLAB or C++ software, and other information:
• Support vector machines (SVM’s) and related kernel methods are currently a hot topic in learning.

• Basic idea: an implicitly computed feature mapping into a higher dimensional space.

• After this, ’nonlinear’ classifiers and representations can be implemented using linear techniques.

• **Reasons for the popularity** of SVM’s and other kernel methods:
 - Theoretically more tractable than for example neural networks.
 - Usually very good statistical performance.
 - A large number of efficient algorithms and implementations are
available.

– Computationally feasible in high-dimensional problems.

• SVM’s are especially useful in pattern classification.

• Kernel PCA can be used for nonlinear representation.

• The method performs often well, but is somewhat heuristic.

• Neural network and Bayesian methods are still quite useful in many situations.

• Kernel methods cannot be applied to all problems.

• Basic restriction: the algorithm to be kernelized should be representable using inner products.

Organization of the seminar

• Four (4) credit points as usual in our seminar courses.
Weekly in the lecture room T4 on Mondays 14:15-16.

No seminar meeting on 31st March due to conference travels.

For a more detailed programme, see a separate file on the web page of the seminar.

Responsible teacher: Prof. Juha Karhunen

Email: Juha.Karhunen@hut.fi, room TB327, tel. 451 3270.

Course assistant: MSc. Karthikesh Raju

His email: karthik@james.hut.fi; room TB330.

The language of the course is English due to foreign participants.

The course is intended mainly for graduate students.

Can be taken by undergraduate students who are mature enough.

Sufficient mathematical background, most of Dipl.Eng. studies done.
• In Appendix B of the book, some mathematical prerequisites are presented.

• You should already know probability theory and linear algebra.

• You can read necessary background on functional analysis from there if necessary (about 5 pages).

• Knowledge on some of our laboratory’s courses (Principles of Pattern Recognition, Neural Networks) is helpful but not necessary.

• There will be no examination; this would be difficult for graduate students working full-time in corporations etc.

• You should write your name, study book number, email address, and department to the enrollment list circulating.

• The last two columns: Insert a cross (x) in if you are a graduate student, or wish to buy the book.
• The price of the book is not too high, 60 USD.
• The delivery time is typically some 2-4 weeks.
• Alternatively, you can content with a copy of the book.
• A master copy made by Karthik is already available.
• You can take your own copies from it yourself.
• Please reserve your own talk from the list circulating in the seminar meetings as soon as possible.

Requirements for passing the course

• Sufficient participation (about 70%) in the seminar meetings.
 – Put a cross to the attendance list whenever you attend.

• You must prepare and present your own talk.
 – Usually one talk per meeting, about 1 hour long.
- If there are two talks, they could be about 45 min each.
- Skip proofs, excessive theory and details, and try to explain clearly the most important matters of the scope of your talk.
- All the figures of the book are available on its home page.
- If possible or reasonable, prepare .pdf slides of your talk.
- These will be inserted to the web page of the seminar.

- **Solving sufficient amount of the given problems.**
 - Solving 50% of the total number of problems suffices for the mark “accepted” (hyväksytty).
 - Solving 90-95% of problems is required for the mark “accepted with distinction (kiittäen hyväksytty)
 - Typically there will be 2 – 3 problems per each talk.
 - You should select yourself 2 – 3 problems on the portion of the book covered in your talk.
– You must be able to solve these problems yourself!
– This guarantees that the problems are not too difficult.
– Give the correct solutions of the problems chosen by you to the course organizer Prof. Juha Karhunen
– Problems are useful because they force people to read the corresponding parts of the book.
– It is preferable but not necessary to return your solutions to the problems given within 2 weeks.

• Performing given computer assignment(s).
 – Easy assignments giving some hands-on experience using available data sets and MATLAB or C++ software.