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Infroduction

X(wp) =Y 0 g o(n)e N g =0,1,...,N -1

% Isa DFT of z(n)

% The function e~72™*/N gives raise to the Fourier
operator

% This function can be regarded as Kernel of the
Fourier Transform.,

% So, what are kernels?



Terminology: A function k which gives rise fo an
operator Ty, via

(Tef) (@) = [ k(z, 2") f(z)da’

is called the kernel of Ty,

History: The term kernel was first used in the field of
intfegral operators as studied by Hilbert and others.

Specific Names: ' Reproducing Kernel, admissible
kernel, Mercer Kernel, Support Vector Kernel,
nonnegative definite kernel, covariance kernel.

1Only applicable to PD kernels



Kernels of Interest

% Here, we are interested in kernels k of the type

d : X —-H

r — x:= O(x)

* i.e Kernels that correspond to dot products in
feature spaces H via a map ¢

k(z,2') = (®(z), ("))

* What kind of functions k(x, ') admit such
representations?



Polynomial Kernels

* %

Given 2D patterns X = R?, consider the nonlinear
map

d: R — H=R?

(CU17$2) — (55175537551332)

This is a collection of product features of degree 2

Such polynomial classification works for small
examples, fails when N is large

Example: 16 x 16 images with a monomial degree
d = 5 yields a dimension of 10'° Impractical Il!
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Kernels provide methods to compute dot products
in higher dimensional spaces without explicitly
mapping into these spaces

Consider the map:

D (x1,z2) — (CU},CU;,CUliEQ,ZEQaZ‘l)

Dot products in the feature space ‘H are the form

(®(x), ®(y)) = 27y, + x5 + 2x1020192 = (T, y)°

The kernel is the square of the dot product in the
input space

S0, in general kernels for polynomials the kernel is
computed as



k(z,y) = (Pa(z), Pa(y)) = (z,y)"

* Ordered and unordered polynomial products lead
to different maypps.

% Multiple occurrences of unordered polynomials are
compensated by scaling them with \/(d — n + 1)!,
n the number of such occurrences as

CI)Q(x) — (33%7 3337 \/§$1$2)

% Although ordered (C';) and unordered ($;) map
into different feature spaces, they are valid
instantiations of feature maps for

k(z,y) = (z,y)"
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Figure 1. Binary Classification mapped into feature
space
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Definitions of Kernelogy

Gram Matrix: A function k : X? — K and patterns
T1,...,T,m € X,the m x m matrix

Kij = k(x4, ;)

is the Gram matrix or Kernel Mafrix of k
PD Matrix: A complex m x m matrix K safisfying

Z CiEjKij 2 0

(29

for all ¢; € C is positive definite.



PD Kernel: A function kK on X x X that gives rise to a
positive definite Gram matrix is a pd kernel.

Additional Points

% Kernels can be considered as generalized dot
products.

% Linearity of dot products does not carry over to
kernels

* Cauchy-Schwarz inequality can be extended to
kernels as

k(z, y)|” < k(z, 2)k(y, y)




Reproducing Kernel Map

% k areadl valued, pd kernel, X a nonempty set.

* Define a map from X intfo a space of functions
mapping X to R, denoted as R* := {f : X — R}
as

d : X —-R"

x — k(.,x)

® (x) denotes the function that assign the value
k(z',z)tox' € Xie., ®(x)(.) = k(.,x)



/TN
JATAN

X X drx) Wy
% Each pattern has been turned intfo a function on
domain X

* Now the pattern is represented by the similarity o
all other points in the input domain.
% To consfruct a feature space associated with &:

- Create a vector space out of the image

- Define a dot product in this space has a strictly
pd bilinear form

. See to that it saftisfies k(x, ') = (®(x), D(z"))

0o o



* Then this kernel is called Reproducing Kernel and
the map is Reproducing Kernel Map

% Itis also possible to define a mapping ¢ from X into
a dot product space and obtain a pd kernel.

* Defines the equivalence of kernels.



Kernel Trick

Given an algorithm, formulated in terms of a
pd kernel k, an alternative algorithm can be
constructed by replacing k£ by another pd kernel &

* After replacement the dot product operates on

®(xy),...,2(x1) instead of ®(x1), ..., P(x1)

- Example: k is a dot product in the input domain

.- However, k and k can be nonlinear algorithms

- Caution: Certain algorithm work only subject to
additional input conditions on the data

- Hence, not every conceivable pd kernel will
make sense.
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Reproducing Kernel Hilbert Spaces

d:RY > H, x— k(x,.)

* These functions were defined in dot product spaces
% Endowing a norm ||z|| := /(zx, z) ,then H is @
RKHS if
- k has the reproducing property

(P, k(x,.)) = P(x), VP e H
<k‘($,.),l€(y,.)> — k:(ZU,y)

- kspans ’H
f(z) =) ak(z,z)

2




Mercer Kernel

* Let k£ be asymmetric real valued kernel such that

N
k(z,y) = Z Aji(z);(y)

holds for almost all (z, y)

* where \; > 0 the eigen values, 1; normalized
orthogonal eigen functions i.e 1;¢; = J;;

% k is a Mercer Kernel Map



Empirical Kernel Map

* Foragivenset {zi,...,2z,} C X,n €N,

o, :RY — R"

x — k(., 95)|{z1,...zrn} =  (k(z1,2),...k(2n, x))T

is the empirical kernel map wrt {z4, ... z,}.

% Evaluation of the kernel map on the training
patterns

* Direct extension of this concept is Kernel PCA map



Examples of kernels

* Polynomial Kernel

k(z,y) = (z,y)"

Y Gaussian RBF kernels

|\$—y|\2)
202

k(z,y) = exp(—

* Sigmoid

k(x,y) = tanh(k{x,y) + V)

* Inhomogeneous polynomials



k(z,y) = ((z,y) +¢)°

Properties

* The above kernels are unitary invariant

k(z,y) = k(Uz,Uy),if U =U"

where U is for instance a rotation
Y RBF kernels are translation invariant

]ﬁ(CC,y) — k(CU + Loy Y —|— yO)va S X

% Polynomial kernels are invariant under orthogonal
transformations of R up to a scaling factor



* Gram Matrix of a Gaussian RBF kernel is full rank
- Implies ®(x,), ..., P(x,,) are linearly
independent
- They span the m dimensional subspace of 'H

- RBKs defined on domains of infinite cardinality,
with no a priori restriction of training examples,
produces an infinite dimension feature space.

- The data is mapped in a way that smooth and
simple estimates are possible.



Kernel Selection

* % %

With so many different mappings to choose from,
which is the best for a particular application?

SVMs can be seen as one framework for
comparison of these mappings

The upper-bound is provided by SLT, which provides
an avenue to compare these kernels

The question has remained for a long fime and
cross-vdlidation remains the preferred method for
kernel selection



Conclusions

* Kernels - from the cornerstone of SVM and other
Kernel methods

% Permit the computation of dot products in
high-dimensional spaces, using functions defined
on pairs of input patterns.

% Kernel trick allows formation of nonlinear variants of
any algorithm cast in terms of dot products.

% Though, any dot product based algorithm can be
kernelized care must be taken fo choose the
kernel, which until now is only through cross
validation.



Problems

% (2.1 Monomial Features in R?e) Verify (2.9) on page
27

* (2.33 Translation of a Dot Product e) Prove (2.79) on
page 48

* (2.35 Polarization Identity ee) For any symmetric
pilinear form (.,.) : X x X — R, we have,
Ve, y € X

(0,9) = T+ v, +2) — (@ —v,2 — )

Now consider the spl. case where (., .) is an
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Euclidean dot product and (x — y, z — y) is the
squared Euclidean distance between x and y.
Discuss why the polarization identity does not imply
that the value of the dot product can be
recovered from the disfances alone. What else
does one need?



