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Introduction

X(ωk) =
∑N−1

n=0 x(n)e−j2πnk/N , k = 0, 1, . . . , N − 1

F Is a DFT of x(n)

F The function e−j2πnk/N gives raise to the Fourier
operator

F This function can be regarded as Kernel of the
Fourier Transform.

F So, what are kernels?
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Terminology: A function k which gives rise to an
operator Tk via

(Tkf)(x) =
∫
X k(x, x

′)f(x′)dx′

is called the kernel of Tk
History: The term kernel was first used in the field of

integral operators as studied by Hilbert and others.
Specific Names: 1 Reproducing Kernel, admissible

kernel, Mercer Kernel, Support Vector Kernel,
nonnegative definite kernel, covariance kernel.

1Only applicable to PD kernels
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Kernels of Interest

F Here, we are interested in kernels k of the type

Φ : X → H

x→ x := Φ(x)

F i.e Kernels that correspond to dot products in
feature spaces H via a map Φ

k(x, x
′
) = 〈Φ(x), φ(x

′
)〉

F What kind of functions k(x, x′) admit such
representations?
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Polynomial Kernels

F Given 2D patterns X = R2, consider the nonlinear
map

Φ : R2 → H = R3

(x1, x2) → (x
1
1, x

2
2, x1x2)

F This is a collection of product features of degree 2

F Such polynomial classification works for small
examples, fails when N is large

F Example: 16×16 images with a monomial degree
d = 5 yields a dimension of 1010 Impractical !!!
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F Kernels provide methods to compute dot products
in higher dimensional spaces without explicitly
mapping into these spaces

F Consider the map:

Φ : (x1, x2) → (x
1
1, x

2
2, x1x2, x2x1)

F Dot products in the feature space H are the form

〈Φ(x),Φ(y)〉 = x
2
1y

2
1 + x

2
2y

2
2 + 2x1x2y1y2 = 〈x, y〉2

F The kernel is the square of the dot product in the
input space

F So, in general kernels for polynomials the kernel is
computed as
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k(x, y) = 〈Φd(x),Φd(y)〉 = 〈x, y〉d

F Ordered and unordered polynomial products lead
to different maps.

F Multiple occurrences of unordered polynomials are
compensated by scaling them with

√
(d− n+ 1)!,

n the number of such occurrences as

Φ2(x) = (x
2
1, x

2
2,
√

2x1x2)

F Although ordered (Cd) and unordered (Φd) map
into different feature spaces, they are valid
instantiations of feature maps for

k(x, y) = 〈x, y〉d
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True boundary:: Ellipse in
the input space

Boundary:: Hyperplane in
the feature space

Figure 1: Binary Classification mapped into feature
space
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Definitions of Kernelogy

Gram Matrix: A function k : X 2 → K and patterns
x1, . . . , xm ∈ X , the m×m matrix

Kij = k(xi, xj)

is the Gram matrix or Kernel Matrix of k

PD Matrix: A complex m×m matrix K satisfying∑
i,j

cic̄jKij ≥ 0

for all ci ∈ C is positive definite.
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PD Kernel: A function k on X × X that gives rise to a
positive definite Gram matrix is a pd kernel.

Additional Points

F Kernels can be considered as generalized dot
products.

F Linearity of dot products does not carry over to
kernels

F Cauchy-Schwarz inequality can be extended to
kernels as

|k(x, y)|2 ≤ k(x, x)k(y, y)
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Reproducing Kernel Map

F k a real valued, pd kernel, X a nonempty set.

F Define a map from X into a space of functions
mapping X to R, denoted as RX := {f : X → R}
as

Φ : X → RX

x→ k(., x)

Φ(x) denotes the function that assign the value
k(x′, x) to x′ ∈ X i.e., Φ(x)(.) = k(., x)
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F Each pattern has been turned into a function on
domain X

F Now the pattern is represented by the similarity to
all other points in the input domain.

F To construct a feature space associated with Φ:
● Create a vector space out of the image Φ
● Define a dot product in this space has a strictly

pd bilinear form
● See to that it satisfies k(x, x′) = 〈Φ(x),Φ(x′)〉
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F Then this kernel is called Reproducing Kernel and
the map is Reproducing Kernel Map

F It is also possible to define a mapping Φ from X into
a dot product space and obtain a pd kernel.

F Defines the equivalence of kernels.
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Kernel Trick

Given an algorithm, formulated in terms of a
pd kernel k, an alternative algorithm can be
constructed by replacing k by another pd kernel k̃

F After replacement the dot product operates on
Φ̃(x1), . . . , Φ̃(x1) instead of Φ(x1), . . . ,Φ(x1)

● Example: k is a dot product in the input domain
● However, k and k̃ can be nonlinear algorithms
● Caution: Certain algorithm work only subject to

additional input conditions on the data
● Hence, not every conceivable pd kernel will

make sense.
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Reproducing Kernel Hilbert Spaces

Φ : RN → H, x → k(x, .)

F These functions were defined in dot product spaces
F Endowing a norm ||x|| :=

√
〈x, x〉 , then H is a

RKHS if
● k has the reproducing property

〈Φ, k(x, .)〉 = Φ(x), ∀Φ ∈ H

〈k(x, .), k(y, .)〉 = k(x, y)
● k spans H

f(x) =
∑
i

aik(x, xi)
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Mercer Kernel

F Let k be a symmetric real valued kernel such that

k(x, y) =

NH∑
j

λjψj(x)ψj(y)

holds for almost all (x, y)
F where λj > 0 the eigen values, ψj normalized

orthogonal eigen functions i.e ψiψj = δij

F k is a Mercer Kernel Map
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Empirical Kernel Map

F For a given set {z1, . . . , zn} ⊂ X , n ∈ N,

Φn : RN → Rn

x→ k(., x)|{z1,...zn} = (k(z1, x), . . . k(zn, x))
T

is the empirical kernel map wrt {z1, . . . zn}.
F Evaluation of the kernel map on the training

patterns
F Direct extension of this concept is Kernel PCA map
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Examples of kernels

F Polynomial Kernel

k(x, y) = 〈x, y〉d

F Gaussian RBF kernels

k(x, y) = exp(−
||x− y||2

2σ2
)

F Sigmoid

k(x, y) = tanh(κ〈x, y〉+ ϑ)

F Inhomogeneous polynomials
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k(x, y) = (〈x, y〉+ c)
d

Properties

F The above kernels are unitary invariant

k(x, y) = k(Ux,Uy), if UT = U−1

where U is for instance a rotation
F RBF kernels are translation invariant

k(x, y) = k(x+ xo, y + yo)∀xo ∈ X

F Polynomial kernels are invariant under orthogonal
transformations of RN up to a scaling factor
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F Gram Matrix of a Gaussian RBF kernel is full rank
● Implies Φ(x1), . . . ,Φ(xm) are linearly

independent

● They span the m dimensional subspace of H
● RBKs defined on domains of infinite cardinality,

with no a priori restriction of training examples,
produces an infinite dimension feature space.

● The data is mapped in a way that smooth and
simple estimates are possible.
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Kernel Selection

F With so many different mappings to choose from,
which is the best for a particular application?

F SVMs can be seen as one framework for
comparison of these mappings

F The upper-bound is provided by SLT, which provides
an avenue to compare these kernels

F The question has remained for a long time and
cross-validation remains the preferred method for
kernel selection
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Conclusions

F Kernels - from the cornerstone of SVM and other
Kernel methods

F Permit the computation of dot products in
high-dimensional spaces, using functions defined
on pairs of input patterns.

F Kernel trick allows formation of nonlinear variants of
any algorithm cast in terms of dot products.

F Though, any dot product based algorithm can be
kernelized care must be taken to choose the
kernel, which until now is only through cross
validation.
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Problems

F (2.1 Monomial Features in R2•) Verify (2.9) on page
27

F (2.33 Translation of a Dot Product •) Prove (2.79) on
page 48

F (2.35 Polarization Identity ••) For any symmetric
bilinear form 〈., .〉 : X × X → R, we have,
∀x, y ∈ X

〈x, y〉 =
1

4
(〈x+ y, x+ y〉 − 〈x− y, x− y〉)

Now consider the spl. case where 〈., .〉 is an
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Euclidean dot product and 〈x− y, x− y〉 is the
squared Euclidean distance between x and y.
Discuss why the polarization identity does not imply
that the value of the dot product can be
recovered from the distances alone. What else
does one need?
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