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Introduction
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Methods:
• Time-Delay Neural Networks (TDNN)
• Multi-state Time-Delay Neural Net-

works (MS-TDNN)
• Neural Networks with Hidden Markov

Model (NN/HMM)

Applications:
• Continuous spelling recognition
• Lipreading (audio-visual hybrids)
• Large-vocabulary conversation over

telephone

Tom B̈ackstr̈om Laboratory of Acoustics, HUT page 2



T-61.182 TDNN 21.2.2002

The first Time-Delay NN’s

• Developed by Weibel and Lang in
1987.

• Calculate phoneme scores directly
from speech segments.

• Feed time-delayed segments into NN
with equal weights.

• Trained with phonemes /b/, /d/ and /g/.

• Shift-invariant model, with not too
large set of parameters.
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Multi-state TDNN

• Extension of TDNN to phoneme se-
quences.

• Five layers; input, hidden, phoneme, dy-
namic time warping (DTW) and word
layer.

• Phonemes are trained frame-by-frame
using the three first layers (input, hidden
and phoneme) with standard back-
propagation.
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• In word-level training an alignment path is searched which maximise the
phoneme sum scores.

• Path searching similarly as in HMM.

• Phonemes on the correct path receive positive training and on other paths
negative training.
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• Sentence-level training is achieved similarly.

• Special rules to avoid insertion errors; e.g. T is recognised as TE.
→ Use word-entrance penalties.

• In experiments, MS-TDNN performs better then HMM, mixed TDNN/HMM
and linear predictive NN in letter recognition tasks.
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Combining lipreading with acoustic signal

• The idea is to include visual information into the acoustic model.

• Fundamental visual unit corresponding to a phoneme is aviseme.

• Again, this is an imitation of human speech recognition, e.g. at a cocktail-
party, looking at the speaker helps separate signal from others.

• The combination of visual and acoustic data can be done

– after the phoneme and viseme layers on an additional layer

– by combining the phoneme and viseme layers

– by feeding both phoneme and viseme data into hidden layer
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• Auditory and visual information importance can be weighted such that the
audiovisual activationhAV for a phoneme is

hAV = λAhA + λV hV , whereλA + λV = 1 (1)

Useful mostly when acoustic and visual phoneme activations are calculated
separately.

• E.g., if the acoustic signal is noisy then rely more on visual information

• Choice ofλA andλV can be done with:

– Entropy weight– If phoneme and viseme activations are evenly spread
then the respective phoneme and viseme entropies are high. High en-
tropy means high ambiguity→ lower weight.

– SNR weight– Calculate estimates for SNR for phonetic and visual data
and set weights accordingly.

– Neural net– Make a simple back-prop network without a hidden layer
to combine the visual and acoustic data.
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Hierarchical mixtures of experts (HME)
• Divide-and-conquer strategy: Learning task is divided into overlapping re-

gions which are trained separately with experts.

• Gating networks are trained to choose the right expert for each input.

• The overall output of the architecture is

µ(x,Θ) =

N∑
i=1

gi(x,vi)

N∑
i=1

gj|i(x,vij)µij(x, θij) (2)

where thegi andgj|i are outputs of the gating networks and theµij represent
gating networks. The parameters of gating and expert networks are denoted
by vi, vij andθij.
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Figure 1: Expert activation diagram
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Context modelling
• The context of the current phoneme is the combination of previous and fol-

lowing phonemes.

• Problem:

– Context affects phonemes and a context model would therefore improve
recognition.

– Number of different phoneme combinations is large.

• One solution: Clustering context classes

– Cluster phonemes in phoneme groups (e.g. labial phonemes) with rel-
evant information for the context.

– Represent phonemes classes in a binary decision tree — trees may end
up with∼ 24.000 leaves.

– Each leaf in the tree represent a state in the HMM.
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• The tree provides prior state probabilities.

• The neural network provides joint probability.

→ posteriori probabilities can be calculated.

• States can be calculated hierarchically.
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Structuring further
• NN’s can be manually set to a hierarchy structure on higher level then con-

text. I.e., noise-speech classification and similar.

• NN’s can be automatically clustered through training.
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Home assignment

On the basis of chapter 7, please explain briefly the differences
and similarities between MS-TDNN and HMM-NN.
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