Some experiments of LVQ training applied to mixture Gaussian HMMs.

Mikko Kurimo

See also:

Computer Speech and Language (1997), Volume 11, Number 4, pages 321-343.

http://www.idealibrary.com/links/doi/10.1006/csla.1997.0034/

Learning problems with large HMM systems

Attempts to improve the performance of models often crash into:

- too many parameters to estimate
- huge amount of samples to scan and learn
- training methods do not scale up well
- "the curse of dimensionality"
- the recognition speed might decline as well

Some special problems

- Segmental K-means tunes only the bmu ⇒ some units adapt (too) well and some are left over
- Embedded Baum-Welch adapts all units ⇒ computationally heavy and practical convergence difficulties
- The computation of gradients in most discriminative training methods is expensive and the required initial training complicates the process
- Some smoothing is required to prevent to accurate training data adaptation
- If the initialization is poor, it usually takes too long to converge into good results

What has SOM to offer?

- Suitable initialization for the mixtures
- Neighbor adaptation brings all the mixtures to effective areas
- The trade-off between smoothing and fitting accuracy is controlled by the width of the neighborhood
- By gradually reducing the width, the best density approximation accuracy occurs in the areas that get most hits by training samples
- Smoothing of the parameters occurs in a very natural way using the samples falling into nearby clusters
- Fast winner search methods used in the density function approximations can exploit the ordering of the mixtures

Segmental training by SOM

- 1. Train one SOM for each phoneme
- 2. Initialize the centroids of the Gaussian kernels and the state dependent weights using the obtained SOM units
- 3. Do the Viterbi segmentation as usual
- 4. Adapt the parameters using the associated set of samples by batch SOM and repeat from step 3. The difference to K-means is that each data vector updates also the topological neighbors of the best matching mixture
- 5. Fine tune the parameters with other training methods (SGPD, SLVQ), if necessary

Minimizing the error rate by segmental LVQ3

- For the best phoneme recognition accuracy the adaptation phase in the HMM training can be done by the segmental LVQ3
- Two rival segmentations (i.e. state paths) are computed for the data samples
- First one fits the known phonetic transcription, as usual, but the second one assumes it unknown.
- For feature vectors, where the phoneme labels of the two segmentations coincide, the state parameters are adapted to maximize the data likelihood, as usual.

Phoneme discrimination

- For frames, where the phoneme labels of the rival segmentations differ, the parameters are adapted to increase discrimination, as in the LVQ2
- The state on the correct path is tuned closer to the observed feature
- The corresponding state on the other path is tuned away from the observed feature

Segmental LVQ3

- Two rival phoneme decodings based on the best path for each are examined
- In SLVQ3 the states on the path for the given correct decoding are adapted as in SKM
- If the incorrect decoding is more likely, the states different from the correct path are adapted to lower the likelihood

Differences to GPD

- Faster and more robust convergence is sought by decreasing state likelihoods only when it is absolutely necessary to avoid a misrecognition
- Unlike in GPD the adaptation step size does not depend directly on the extent of the misclassification of the whole path
- In general, robustness is sought in SLVQ3 by using as simple learning rules and as few control parameters as possible
- Segmental GPD:[W. Chou et. al., Proc. ICASSP, 1992]

Corrective tuning by LVQ2

- A pure corrective training algorithm
- The parameters of the states are modified stochastically in small steps after each incorrectly recognized feature.
- The learning rate decreases gradually
- Otherwise similar as the segmental LVQ3 without the likelihood maximization option
- A fine tuning method only applicable after the HMMs are already trained well by another method
- The error rate on data not used in training will eventually start to increase, if this method is used too many epochs.

Framework of experiments

- Finnish speech recognition for unlimited vocabulary
- Phoneme models using mixture density HMMs
- Using a large number of Gaussian mixtures with the help of SOM
- Minimization of recognition errors by applying LVQ training

Speech material

- Each speaker has dictated a list of 350 words on 4 different days
- The list is balanced to contain the most common phoneme combinations of the Finnish language
- The data is collected from 20 speakers
- The speaker-dependent models are trained by 3 word sets and tested on the remaining set
- Most of the results are given as an average error rate of 7 speakers
- For verification the most important results are computed as well for an older slightly different speech database of 3 speakers

Results

Init.	HMM training	Error rate	
		5 ep	10 ep
KM	SKM	6.2	6.1
KM	m SKM+SGPD		5.4
KM	SGPD	5.8	5.6
SOM	SSOM	5.9	5.5
SOM	SSOM $+$ SGPD		5.1
SOM	$oxed{SSOM+SLVQ3}$		5.3
SOM	SLVQ3	5.3	5.3
SOM	SLVQ3+SGPD		4.8

- 5 epochs by SLVQ3 gave the fewest errors in average
- The error rates did not improve significantly after 5th epoch except for method combinations (and for SSOM)
- Lowest rate was then obtained by SLVQ3+SGPD

Results for a larger model

Init.	HMM training	Error rate	
		5 ep	10 ep
KM	SKM	5.6	5.6
KM	${ m SKM+SGPD}$		5.0
KM	SGPD	5.5	5.4
SOM	SSOM	5.2	4.9
SOM	SSOM+SGPD		5.5
SOM	SSOM+SLVQ3		5.0
SOM	SLVQ3	4.8	4.7
SOM	SLVQ3+SGPD		4.8

- 140 Gaussians per phoneme (instead of 70)
- The more detailed model did not drop the SGPD error rate as much as for the others (e.g. SSOM)
- Training after 5th epoch does not seem to give lower error rates than the SLVQ3
- 140 mixtures might be too much for this training data

Conclusions of SOM-LVQ tests

- The segmental LVQ3 seems to do best in this comparison test
- The combination of using first the (perhaps more robust) SLVQ3 and then the SGPD gave the lowest error rate
- The smoothness obtained by SOM training seems to help in training larger models
- A proper comparison between the methods would require several different databases, however
- Here, the averaged results on the Finnish database are used for a tentative ranking
- The obtained error rate can be much improved for practical recognition tasks