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1. Introduction

This paper gives an overview of three dgorithms for handling sequences and time series. The
paper by Dobrzewski et a.[1], presented in chapter 2, is about incorporating tempora ordering
of a sequence to a sdf-organizing map. The other two papers by Fancourt & Principe [2], [3]
condgder segmentation and identification of time series with competitive predictors. These
agorithms of these papers are presented shortly in chapter 3. The paper ends with a discussion
about the agorithms presented.

2. Wave propagation in SOM

Sdf-organizing maps suit well for classfication of datic festure vectors. Wave propagation
agorithm suggested by Dobrzewski et d. [1] is a way to capture aso the tempora aspects of an
input sequence to a sdf-organizing map. In the dgorithm the previous fegtures affect the choice
of the winning nodes by changing the activation sengtivity of the nodes in waves around the
previous winners.

The wave propagation dgorithm garts with a conventiond sdf-organizing map procedure. A
feature vector U is presented to the mgp and a winning reference vector W is found. After this
the algorithm proceeds to wave propagation to represent the tempora order of the features. A
wave Y(rt) a time t a podtion r starts a time t=t; a the podtion of the winner, ri""". The
index i is the number of the feature vector U; in the sequence. Wave propagation ends a time
ti+2 when the next feature vector Uj.1 is presented to the map. Now the wave is defined as

? i(r’t) =H (Cti - dwin(r ))H (dwin(r)' ct, '+b)H (r’t) 1)

where t'=t-tj, b is the wave crest width, dyin(r)= is the distance of a node from the winner node,
H is the Heavisde function, H(x)=0 if x<0, and H(x)=1 otherwise, and H(r,t) is a "hisory
function”. The higory function restricts wave propagation according to the past winners. In the
beginning of a new sequence

H(r,tl) =1 fordlr 2
The vaue of the history function is set to zero at positions r, which the wave crest haslleft, i.e.
H(rt)® 0if 2i(r,t)® O 3)

and it remains zero for the rest of the sequence. Thus, a subsequent wave does not propagate
into aregion where an earlier wave has been during the same sequence.

The described wave propagetion is illudtrated in Figure 1. The nodes probability to win is
enhanced in the find wave region according to the equation

" =agmin(u, - W [- b2 (- 1)) ()
As dated earlier, the first winner (=1) is determined in the standard way, i.e. Y o=0, giving the
sandard SOM winner node determination. The term b in Eqg. (4) determines how much feature
gmilarity or sequence pogtion is emphasized. A choice b=0 leads to the standard SOM . |If
b>0, the receptive fidds of nodes (i.e. the regions where the node win the competition for the
feature vector) with Y;=1 are enlarged. Increesng b increases dso the receptive fidds until

b >||Wi - Wj”" i, j, when the whole festure space is partitioned by the nodes on the wave



crest. This means the winner node is adways postioned on the crest and the later the feature
vector is presented, the farther from the predecessor it will be represented. If the sequence is
long, the wave could have left the whole map, i.e. Yi(r,t)o=0 for dl the nodes. In this case the
winner is determined according to the slandard SOM agorithm.
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Figure 1. Three waves on the map started by three subsequent winner nodes at positions r;"™".

The wave propagation concept was implemented in digitd hardware of 16 microcontrollers.
These microcortrollers represented map nodes and they were used in processng of a 4-
phoneme sequence "M O T O" . Each phoneme was described by energies of 3 frequency
channels resulting to a 3-dimensond feeture vector. After normdization the feeture vectors lie
on a 2-dimengond plane. The results of a 1-dimensiona 16 node network are in Figure 2.
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Figure 2. Representation of the phoneme sequence "M O T O" with two different values of b.



3. Neighborhood map of predictors

The papers of Fancourt & Principe [2], [3] describe an off-line technique for unsupervised
segmentation and identification of time series. The technique is based on neighborhood map of
competitive one step predictors. The map competes for the data and during the learning phase
the winning predictor gets the largest parameter update. The other predictors get smdler
updates according to their distance from the winner on the neighborhood map.

The winner of the competition for the data is is the one with the smdlest memory of squared
eror:

winner (n) = arg min (2 (n)) (5)

where e?(n) is the memory of ith predictor's squared error a time step n. The memory of
squared error is determined with exponentially decaying window

e’(n)=1&(n)+ - 1)e(n-1) ()

where e(n) is the instantaneous squared error and | is the memory term(0<| <1). The effective
memory depth, i.e. the number of samples, is| 2.

The learning rate of a predictor is

2s Z(n)é (7)

where | is the winning predictor, d;;(n) is the neighborhood distance from predictor i to j & time
n and s is the paameter for neighborhood width. Both the neighborhood width s and the
globd learning rate g of the map are exponentidly anneded:

n
t

S (n) =s,e' ad g(n) = goe-

€S)
wheret isthe anneding rate. Thus, the total learning rate for predictor i is
h; (n) = g(n)L i (n) )

Smulations where run to give a view of the peformance of the dgorithm. In dl of the
amulations lineer predictors traned with normdized LMS were used. The map is one
dimensond continuous map with last node mapped next to the fird. The traning was done

with 50 passes through the entire time series with annedling rate of t =5 passes.

The firda dmulation was made with a switching FIR process. The process has 8 dationary
regions (Figure 3a). The results in Figure 3b are fairly good, except unexpectedly long winning
period for predictor 8 and some errors near samples 200 and 475. The latters are due to the
outliersin the time series.
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Figure 3. Switching FIR process. ) time series, b) winning predictors after training.

Another gmulation was run with gpeech sample The sample was word "done' from Timit
database and 7 predictors were used for segmentation. The sample and the results are in the
Figure 4. The segmentation achieved is close to the Timit suggested phoneme segmentation
shown in the figure However, the same predictor won both the /a/ and /ow/ phonemes and
predictors 1 and 7 won less than 1% of the time. This suggests that the activation digtribution of
the nodesis not optimal.
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Figure 4. Speech example: @) time series and phoneme segmentation, b) winning predictors
after training.

The second paper of Fancourt & Principe [3] adso proposes a sdf-anneding competitive
prediction, a way to couple the degree of competition and the memory depth. This diminates



the need for separate anneding of the memory depth and the competition. Moreover, the
memory term | does not need to be experimentaly determined anymore like in neighborhood

map agorithm. However, the results of the sdlf-annedling agorithm are not as good as with the
neighborhood map.

5. Discussion

The wave propagation agorithm of Dobrzewski et d. represents wel the tempord aspects of
the sample phoneme sequence. However, & the same time this weskens the map's ability to
preserve topology. Thus, there is a contradiction between competitive ordering and topographic
mapping. This is a clear weskness of the dgorithm a least in Stuations where very different
feature vectors succeed each other in the sequence or where similar fegture vectors are far from
each other in the tempora sense.

Fancourt & Principe's neighborhood map of competing predictors gives encouraging results in
the segmentation and identification tasks. The predictors can be trained pardld in ther usud
way and the only information from the magp is the adjusments to the learning rates. One
weekness of the dgorithm is its need for manud memory depth optimizaion. In the
gmulaions presented, the memory depth was optimized experimentaly, thus increesng the
time needed for the training. The sdf-anneding agorithm described in the second paper of
Fancourt & Principe solves the problem of memory depth determination but the results are
clearly worse than with the neighborhood map.
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