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Abstract 
 
Our project work consists on building a Hidden Markov Model (HMM), to recognize 
CpG islands inside DNA sequences. For this purpose we have implemented the HMM 
with all its variables, the “Baum-Welch”, “Forward” and “Backward” algorithms for 
training the model, and the “Viterbi” algorithm for finding the CpG structures into the 
sequences. Later, we have tested the model using own examples and real data and 
compared the results with the output of an available application found in Internet. 
 

Introduction 
 
In the human genome wherever the dinucleotide CG occurs (frequently written CpG 
to distinguish it from the C-G base pair across the two strands) the C nucleotide 
(cytocine) is typically chemically modified by methylation. There is a relatively high 
chance of this methyl-C mutating into a T, with the consequence that in general CpG 
dinucleotides are rarer in the genome than could be expected from the independent 
probabilities of the C and G. For biologically important reasons the methylation 
process is suppressed in short stretches of the genome, such as around the promoters 
or “start” regions of many genes. In these regions we see many more CpG 
dinucleotides than elsewhere, and in fact more C and G nucleotides in general. Such 
regions are called CpG islands. They are typically a few hundred to a few thousand 
bases long. 
 
Our problem now is, given a long piece of a DNA sequence, how a CpG island could 
be found in it, if there are any. For this purpose we have chosen to use a Hidden 
Markov Model (HMM) with the Viterbi algorithm.   
 
A HMM can be seen like a finite state machine in which the following state only 
depends on the present state (present but not passed memory), and we have a 
observations or parameters vector associated to each transition between states. It is 
possible thus to be said that a model of Markov have two processes associated: one 
hidden, no directly observable, corresponding to the transitions between states, and 
another observable one (and directly related to first), whose accomplishments are the 
vectors of parameters that take place from each state and which they form the pattern 
to recognize. 
 
To apply the HMM method to our problem we must define a suitable model for 
representing our system, and later on, to train it for recognizing the CpG islands with 
a set of example sequences known to contain CpG islands inside. 
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Description of the methods  
 
The project work could be divided into three different phases: 
  

1. Model definition 
2. Training algorithms 
3. Analyzing method  
4. Data description 
5. Application description 

 

1. Model definition 
 
In a DNA sequence we can set a difference between fragments which are CpG island 
and fragments which are not. Therefore we have built a HMM model consisting in 
two states, representing to be or not to be in a CpG island, in the current point of the 
sequence.  
 
When we are in a CpG island the probability of seeing C’s or G’s is bigger than in a 
normal sequence. And the probability to stay in the same state when this is not CpG is 
bigger than the probability to transit to the other state. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 1. HMM for CpG island recognition. 

 
 
For correctly defining the HMM we need to establish the following parameters: 
  

1. Number of states in the model (N). Although the states are hidden, for many 
practical applications there is often some physical significance attached to the 
states or to sets of states of the model. For our problem we need to represent 
two states, State 1 for non CpG and State 2 for CpG. 

 
2. The number of distinct observation symbols per state (M). It is the discrete 

alphabet size. The observation symbols corresponds to the physical output of 
the system being modeled. For the CpG islands recognition, the observation 
symbols are simply the four DNA nucleotides (A, C, G, T). 
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3. The state transition probability distribution (transitions matrix, A). Each 

element aij represents the probability of transit from the state i to the state j. In 
our example the initial values for the matrix A are the following: 
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4. The observation symbol probability distribution (emissions matrix, E). Each 

element eij represents the probability of seeing the symbol j being at the state i. 
In our example the initial values for the matrix E are the following: 
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5. The initial state distribution (vector π). Its elements πi represents the 

probability of begin in the state i. In our design we have supposed that we 
always begin in a non CpG island, therefore our vector π is: 
 

)0,1(=π  
 
 

2. Training algorithms 
 
We will use these parameters as the initial values for the training process. The 
algorithm used for that purpose was the Baum-Welch algorithm, which requires the 
implementation of the Forward and Backward algorithms also. Now, we will describe 
very roughly these algorithms: 
 

1. Baum-Welch algorithm: 
 
This algorithm has a natural probabilistic interpretation; informally, it first estimates 
the Akl and Ekb by considering probable paths for the training sequences using the 
current values of akl and ekb. Then the followings equations are used to derive new 
values of the a’s and e’s: 
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This process is iterated until some stopping criterion is reached.  
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More formally, the Baum-Welch algorithm calculates Akl and Ekb as the expected 
number of times each transition of emission is used, given the training sequences. To 
do this it uses the same forward and backward values as the posterior probability 
decoding method. The probability that akl is used at position i in sequence x is: 
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From this we can derive the expected number of times that akl is used by summing 
over all positions and over all training sequences, 
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where fk

j(i) is the forward variable calculated for the sequence j, and bl
j(i) is the 

corresponding backward variable. Similarly, we can find the expected number of 
times that letter b appears in state k, 
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where the inner sum is only over those positions i for which the symbol emitted is b. 
 
Having calculated these expectations, the new model parameters are calculated just as 
before. We can iterate using the new values of the parameters to obtain new values of 
the As and Es as before, but in this case we are converging in a continuous-valued 
space, and so will never in fact reach the maximum. It is therefore necessary to set a 
convergence criterion, typically stopping when the likelihood change can be used for 
the iteration. 
 
 

2. The forward algorithm 
 
The forward algorithm is used to calculate the probability of the observed sequence to 
be produced by the model. The forward variable fk(i) is the probability of the observed 
sequence up to an including xi, requiring that πi = k. 
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3. The backward algorithm 

 
The backward algorithm calculates the same probability as the forward algorithm, but 
instead obtained by a backward recursion starting at the end of the sequence. The 
recursion equation is: 
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3. Analyzing method  
 
For recognition stage, we will use the Viterbi algorithm. This algorithm, is used to 
find the optimal states sequence associated to a given observations sequence. For our 
problem, it means that, given a DNA sequence, it is able to distinguish which part is 
part of a CpG island and which is not. The Viterbi algorithm is: 
 
• Initialization (i = 0): 

 v1(0) = 1, v2(0) = 0 
 
• Recursion (i = 1..L): 
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• Termination: 
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• Trace back (i = L..1): 
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To use this algorithm in a computer with long sequences of data it is necessary to take 
logarithms of the probability values to avoid the risk of the underflow error due to the 
repetitive probability multiplications. Then the main equation of the algorithm 
becames the following: 

))log()1((maxarg)(

))log()1((max)log()(

klkki

klkklxl

aivlptr

aiveiv
i

+−=

+−+=
 

 

4. Data description  
 
We have two types of data for our program, the training data and the testing 
sequences. 
 
First, we have trained the model with a set of sequences that were built on the 
following way: we have found a set of examples of human DNA sequences known to 
be CpG islands in the web pages of  “The sanger center” 
(http://www.sanger.ac.uk/HGP/cgi.shtml), but that we really need for the training set 
are sequences containing parts of CpG island and normal parts. We were looking for 
this kind of sequences in the web, but we did not find them, so we decided to create 
them by adding random sequences to the sides of the CpG sequences. For this purpose 
we have created a program which generates random sequences with a little more 
probability of having A’s and T’s nucleotides than C’s or G’s, for simulating actual 
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human DNA sequences (with no CpG islands). Although they are not real data, they 
are enough to check the correction of the outputs of our application. 
 
We have used four testing sequences; three of them were built using the same method 
explained above. The last sequence was a completely random sequence with no CpG 
islands at all, it was used to contrast the results with the previous examples. 
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Description of the results 
 
 
Our application, called “cpg”, is able to given a training set of examples and a 
sequence of DNA return a 0’s and 1’s string corresponding to the state of the model in 
each point of the sequence, 0 correspond to the parts of the sequence that are not CpG 
island and 1 correspond to the part of the sequence that have been recognized as CpG 
island. 
 
The training set must be represented in a text file, in which each line (composed by 
A’s, C’s, G’s and T’s) corresponds to a different sequence of DNA. In our example 
we use the file “training_set”, which have 636 different DNA sequences. To obtain 
this file we have use the program “modify”, invoked with the file “cpg_set” which 
contains 636 CpG islands, as we have explained above. 
 
The sequence to be recognized has to be represented in the same way in another text 
file. We have used the files “test1”, “test2”, “test3” and “test4”. 
    
To invoke the application we only have to type: 
 
 $> cpg  <training_file> <sequence_file> 
 
And we will obtain the model parameters before and after the training stage, and the 
recognized string compared with the original sequence. 
 
After the tests we have proved the same sequences in the tool: “CpG Islands Plot” of 
the European Bioinformatics Institute (EBI), that can be found at: 
http://www.ebi.ac.uk/emboss/cpgplot/, to make a comparison with our results. 
 
Due to the training set and the initial values for the parameters are the same for all the 
tests, the final parameters after training are also the same for each example: 
 
Initial parameters:

Matrix A:
State 1 State 2

State 1: 0.600000 0.400000
State 2: 0.500000 0.500000

Matrix E:
A C G T

State 1: 0.300000 0.200000 0.200000 0.300000
State 2: 0.200000 0.300000 0.300000 0.200000

Parameter after training stage:

Matrix A:
State 1 State 2

State 1: 0.620211 0.379789
State 2: 0.519492 0.480508
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Matrix E:
A C G T

State 1: 0.348647 0.152400 0.155769 0.343184
State 2: 0.241229 0.258088 0.263453 0.237230

 
 
 
These are the outputs for the tests of our tool and the EBI tool: 
 

Test 1: 
 
 Training file:  training_set 
 Sequence file:  test1 
 
Cpg output: 
 

Sequence:TTATACTTAGTTGCATAGTAGAACATTATTATATTGATAACAGACACGTAGCAAGGCGTT
Opt.path:000000000000011000000000000000000000000000000001100110011110

CAGGGGGCTTTCGGTCCGGAAGCAGCGTCGGGGCGGGAATTCGAACCCTGAATCCTAAGATTAAGTCTA
000111111000111011110011011101111111110000110011100000110000000000000

CCACAATTTTGAAGTGACGATGAATGTGTCC
0110000000000000001100000000001

 
 
“Cpg Islands Plot” output: 
 
 
CPGPLOT islands of unusual CG composition
from 51 to 110

Observed/Expected ratio > 0.60
Percent C + Percent G > 50.00
Length > 160

 

Test 2: 
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 Training file:  training_set 
 Sequence file:  test2 
 
Cpg output: 

Sequence:ACAGAAGAACATTATAGCGTTACAATAATTATATCTGATGTATTTTTGCCCATCCGCCCC
Opt.Path:000000000000000001110000000000000000000000000000111100111111

GGGGTNCGGCGAGCCTGTGTTCACCAAGCCATGCCACGGTTCCCGCGACCTAGCCGCACATATATCATT
111110011111011100000000110011100111011100111111011001111100000000000

TCTACATAAGCTGGGTTTAAATTCAAATATT
0000000000110111000000000000000

 
“Cpg Plot” output: 
 
CPGPLOT islands of unusual CG composition
from 51 to 110

Observed/Expected ratio > 0.60
Percent C + Percent G > 50.00
Length > 160

 

 

 

 

 

 

 

 

Test 3: 
 
 Training file:  training_set 
 Sequence file:  test3 
 
Cpg output: 
 
Sequence:AATGTAATCTGCCATACTTTAGACAAAAAAATTTTAATGTCACTGACAAATCTTCGGAGT
Opt.path:000000000001110000000000000000000000000000000000000000011100

GCTGGGGCCCCTCCCGTNCATCCTCCTGAGCCCAGAGCCAGGGATCGCGGTGCAATAGATCGACTTTTT
011011111111011110000011011000111100011101110011111011000000011000000

CTAATCTTTCACTAGAAGGCCATTAATAACT
0000000000000000001111000000010
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“Cpg Plot” output: 
 
CPGPLOT islands of unusual CG composition
from 51 to 110

Observed/Expected ratio > 0.60
Percent C + Percent G > 50.00
Length > 160

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Test 4: 
 
 Training file:  training_set 
 Sequence file:  test4 (random sequence) 
 
 
Cpg output: 

Sequence:TGAATCGACTGTGTTTTAATACAAAGAATCTTTCTTGTCATAGTCGATATATTAGTTACC
Opt.path:000000110000000000000000000000000000000000000110000000000001

TAGTTATACTTGAAGACTTTCTGATATAGTTACATGAAGTACCTGATTTTGTGAAT
10000000000000000000000000000000000000000011000000000000
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“Cpg Plot” output: 
 
CPGPLOT islands of unusual CG composition
from 51 to 66

Observed/Expected ratio > 0.60
Percent C + Percent G > 50.00
Length > 116
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Conclusions 
 
It is possible to conclude that the performance of the method is reasonably good, due 
to the increased number of 1’s found in the CpG island fragments in the three first 
examples. Taking into account that the outputs of the model are only based on the 
probability of finding particular observations (C’s and G’s) in the sequences and not 
on the structure of the CpG islands, due to the simplicity of the model which is only 
two-state, the results of the tests reveal important similarities with the outputs of the 
professional tool. 
 
The search of possible improvements to this results would make necessary to change 
the HMM for a more complex one, in which it would be fine to take into account the 
differences between the transition probabilities between the observation of different 
bases being inside or outside a CpG island. 
 
We can use the forth sequence as a regulatory example to check the behavior of the 
method with completely empty (of CpG) entries. The result is quite satisfactory 
because only a few 1’s are found. 
 
To end we would like to say that the work on the project has been more difficult and 
long than expected, however it has been also more satisfactory. We hope that the 
length of the report will not be a weakness of our project, because we have 
compressed it as much as we have been able, and we think that a shorter project report 
would not be representative of our work. 
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