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Tik-61.123 Computer Architecture
Lecture 4: Shifters, Divide, Floating Point
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MIPS logical instructions

° Instruction Example Meaning Comment
° and and $1,$2,$3 $1 = $2 & $3 3 reg. operands; Logical AND
° or or $1,$2,$3 $1 = $2 | $3 3 reg. operands; Logical OR
° xor xor $1,$2,$3 $1 = $2 ⊕ $3 3 reg. operands; Logical XOR
° nor nor $1,$2,$3 $1 = ~($2 |$3) 3 reg. operands; Logical NOR
° and immediate andi $1,$2,10 $1 = $2 & 10 Logical AND reg, constant
° or immediate ori $1,$2,10 $1 = $2 | 10 Logical OR reg, constant
° xor immediate xori $1, $2,10 $1 = ~$2 &~10 Logical XOR reg, constant
° shift left logical sll $1,$2,10 $1 = $2 << 10 Shift left by constant
° shift right logical  srl $1,$2,10 $1 = $2 >> 10 Shift right by constant
° shift right arithm. sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend) 
° shift left logical sllv $1,$2,$3 $1 = $2 << $3 Shift left by variable
° shift right logical  srlv $1,$2, $3 $1 = $2 >> $3 Shift right by variable
° shift right arithm. srav $1,$2, $3 $1 = $2 >> $3 Shift right arith. by variable
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Shifters

Two kinds:

logical-- value shifted in is always "0"

arithmetic-- on right shifts, sign extend

msb lsb"0" "0"

msb lsb "0"

Note: these are single bit shifts.  A given instruction might request
0 to 32 bits to be shifted!
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Review: Combinational Shifter from MUXes

° What comes in the MSBs?

° How many levels for 32 -bit shifter?

° What if we use 4 -1 Muxes ?

1 0sel

A B

D

Basic Building Block

8-bit right shifter

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

S2 S1 S 0A0A1A2A3A4A5A6A7

R0R1R2R3R4R5R6R7
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General Shift Right Scheme using 16 bit example

S 0 
(0,1)

S 1
(0, 2)

If added Right -to-left connections could
support Rotate (not in MIPS but found in ISAs)

S 3
(0, 8)

S 2
(0, 4)
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Funnel Shifter

XY

R° Shift A by i bits 
(sa= shift right amount)

° Logical:       Y = 0,  X=A, sa=i

° Arithmetic? Y = _,  X=_, sa=_

° Rotate?        Y = _,  X=_, sa=_

° Left shifts?   Y = _,  X=_, sa=_

Instead Extract 32 bits of 64.

Shift Right

Shift Right

32 32

32

Y X

R
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Barrel  Shifter

Technology-dependent solutions: transistor per switch

D3

D2

D1

D0

A6

A5

A4

A3 A2 A1 A0

SR0SR1SR2SR3
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Divide: Paper & Pencil

1001 Quotient

Divisor 1000  1001010 Dividend
–1000

10
101
1010

–1000
10 Remainder (or Modulo result)

See how big a number can be subtracted, creating quotient 
bit on each step

Binary => 1 * divisor or 0 * divisor

Dividend = Quotient x Divisor + Remainder
=> | Dividend | = | Quotient | + | Divisor |

3 versions of divide, successive refinement
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DIVIDE HARDWARE Version 1

° 64-bit Divisor reg, 64-bit ALU, 64-bit Remainder reg, 
32-bit Quotient reg

Remainder

Quotient

Divisor

64-bit ALU

Shift Right

Shift Left

Write
Control

32 bits

64 bits

64 bits
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2b. Restore the original value by adding the 
Divisor register to the Remainder register, &
place the sum in the Remainder register. Also
shift the Quotient register to the left, setting 
the new least significant bit to 0.

Divide Algorithm Version 1
°Takes n+1 steps for n -bit Quotient & Rem.

Remainder         Quotient Divisor
0000 0111 0000 0010 0000

Test 
Remainder

Remainder < 0Remainder • 0

1. Subtract the Divisor register from the 
Remainder register, and place the result 
in the Remainder register.

2a. Shift the 
Quotient register 
to the left setting 
the new rightmost
bit to 1.

3. Shift the Divisor register right1 bit.

Done

Yes: n+1 repetitions (n = 4 here)

Start: Place Dividend in Remainder

n+1
repetition?

No: < n+1 repetitions
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Observations on Divide Version 1

° 1/2 bits in divisor always 0
=> 1/2 of 64-bit adder is wasted
=> 1/2 of divisor is wasted

° Instead of shifting divisor to right, 
shift remainder to left?

° 1st step cannot produce a 1 in quotient bit 
(otherwise too big)
=> switch order to shift first and then subtract, 

can save 1 iteration
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DIVIDE HARDWARE Version 2

° 32-bit Divisor reg, 32-bit ALU, 64-bit Remainder reg, 
32-bit Quotient reg

Remainder

Quotient

Divisor

32-bit ALU

Shift Left

Write
Control

32 bits

32 bits

64 bits

Shift Left
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Divide Algorithm Version 2
Remainder          Quotient   Divisor
0000 0111 0000 0010 

3b. Restore the original value by adding the Divisor 
register to the left half of the Remainderregister, 
&place the sum in the left half of the Remainder 
register. Also shift the Quotient register to the left, 
setting the new least significant bit to 0.

Test 
Remainder

Remainder < 0Remainder • 0

2. Subtract the Divisor register from the 
left half of the Remainder register, & place the 
result in the left half of the Remainder register.

3a. Shift the 
Quotient register 
to the left setting 
the new rightmost
bit to 1.

1. Shift the Remainder register left 1 bit.

Done

Yes: n repetitions (n = 4 here)

nth
repetition?

No: < n repetitions

Start: Place Dividend in Remainder
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Observations on Divide Version 2

° Eliminate Quotient register by combining with Remainder as shifted left
• Start by shifting the Remainder left as before. 

• Thereafter loop contains only two steps because the shifting of the 
Remainder register shifts both the remainder in the left half and the 
quotient in the right half 

• The consequence of combining the two registers together and the 
new order of the operations in the loop is that the remainder wi ll 
shifted left one time too many.

• Thus the final correction step must shift back only the remainder in 
the left half of the register
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DIVIDE HARDWARE Version 3

° 32-bit Divisor reg, 32 -bit ALU, 64-bit Remainder reg, 
(0-bit Quotient reg)

Remainder (Quotient)

Divisor

32-bit ALU

Write
Control

32 bits

64 bits

Shift Left“HI” “LO”
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Divide Algorithm Version 3
Remainder Divisor
0000 0111 0010

3b. Restore the original value by adding the Divisor 
register to the left half of the Remainderregister, 
&place the sum in the left half of the Remainder 
register. Also shift the Remainder register to the 
left, setting the new least significant bit to 0.

Test 
Remainder

Remainder < 0Remainder • 0

2. Subtract the Divisor register from the 
left half of the Remainder register, & place the 
result in the left half of the Remainder register.

3a. Shift the 
Remainder register 
to the left setting 
the new rightmost
bit to 1.

1. Shift the Remainder register left 1 bit.

Done. Shift left half of Remainder right 1 bit.

Yes: n repetitions (n = 4 here)

nth
repetition?

No: < n repetitions

Start: Place Dividend in Remainder
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Observations on Divide Version 3

° Same Hardware as Multiply: just need ALU to add or subtract, and 63-bit 
register to shift left or shift right

° Hi and Lo registers in MIPS combine to act as 64 -bit register for multiply 
and divide

° Signed Divides: Simplest is to remember signs, make positive, and 
complement quotient and remainder if necessary

• Note: Dividend and Remainder must have same sign

• Note: Quotient negated if Divisor sign & Dividend sign disagree
e.g., –7 ÷ 2 = –3, remainder = –1

° Possible for quotient to be too large: if divide 64-bit interger by 1, 
quotient is 64 bits (“called saturation”)
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Floating-Point
° What can be represented in N bits?

° Unsigned 0 to 2

° 2s Complement - 2 to 2 - 1

° 1s Complement -2+1 to 2-1

° Excess M  -M to 2 - M - 1
• (E = e + M)

° BCD 0 to 10 - 1

° But, what about?

• very large numbers? 9,349,398,989,787,762,244,859,087,678

• very small number? 0.0000000000000000000000045691
• rationals  2/3

• irrationals ¦ 2

• transcendentals e, š

N

N-1 N-1

N-1 N-1

N

N/4
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Recall Scientific Notation

6.02 x 10                               1.673 x 10
23 -24

exponent

radix (base)Mantissa

decimal point

Sign, magnitude

Sign, magnitude

IEEE F.P.      ± 1.M x 2
e - 127

° Issues:

• Arithmetic (+, -, *, / )

• Representation, Normal form
• Range and Precision

• Rounding

• Exceptions (e.g., divide by zero, overflow, underflow)

• Errors
• Properties  ( negation, inversion, if A ° B then A - B ° 0 )
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Review from Prerequisties: Floating-Point Arithmetic
Representation of floating point numbers in IEEE 754 standard:

single precision
1 8 23

sign

exponent:
excess 127
binary integer

mantissa:
sign + magnitude, normalized
binary significand w/ hidden
integer bit:  1.M

actual exponent is
e = E - 127

S E M

N = (-1)   2           (1.M)
S E-127

0 < E < 255

0 = 0 00000000 0 . . . 0             -1.5 = 1 01111111 10 . . . 0

Magnitude of numbers that can be represented is in the range:

2
-126

(1.0) to 2
127

(2 - 2 23 )

which is approximately:

1.8 x 10 -38 to 3.40 x 10 38

(integer comparison valid on IEEE Fl.Pt. numbers of same sign!)
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Basic Addition Algorithm
For addition (or subtraction) this translates into the following steps:

(1)  compute Ye - Xe (getting ready to align binary point)

(2)  right shift Xm that many positions to form Xm 2

(3)  compute Xm 2            + Ym

if representation demands normalization, then a normalization step
follows:

(4)  left shift result, decrement result exponent (e.g., 0.001xx…)
right shift result, increment result exponent (e.g., 101.1xx…)
continue until MSB of data is 1   (NOTE: Hidden bit in IEEE Standard)

(5)  doubly biased exponent must be corrected:

Xe = 7
Ye = -3
Excess 8

extra subtraction step of the bias amount

(6)  if result is 0 mantissa, may need to set the exponent to zero by
special step

Xe-Ye

Xe-Ye

Xe = 1111
Ye = 0101

10100

= 15
=   5

20

= 7 + 8
= -3 + 8

4 + 8 + 8
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Extra Bits for rounding

"Floating Point numbers are like piles of sand; every time you m ove one 
you lose a little sand, but you pick up a little dirt."

How many extra bits?   

IEEE: As if computed the result exactly and rounded.

Addition:

1.xxxxx 1.xxxxx 1.xxxxx

+ 1.xxxxx 0.001xxxxx 0.01xxxxx

1x.xxxxy               1.xxxxxyyy              1x.xxxxyyy
post-normalization          pre -normalization          pre and post

° Guard Digits: digits to the right of the first p digits of significand to 
guard against loss of digits – can later be shifted left into first P places 
during normalization.

° Addition: carry-out shifted in

° Subtraction: borrow digit and guard

° Multiplication: carry and guard,   Division requires guard
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Rounding Digits
normalized result, but some non-zero digits to the right of the

significand -->  the number should be rounded

E.g., B = 10, p = 3: 0  2  1.69

0  0  7.85

0  2  1.61

=  1.6900  * 10

= - .0785 * 10

=   1.6115 * 10

2-bias

2-bias

2-bias
-

one round digit must be carried to the right of the guard digit so that 
after a normalizing left shift, the result can be rounded, according
to the value of the round digit

IEEE Standard:
four rounding modes:   round to nearest  (default)

round towards plus infinity
round towards minus infinity
round towards 0

round to nearest:
round digit < B/2  then truncate

> B/2  then round up (add 1 to ULP: unit in last place)
= B/2  then round to nearest even digit

it can be shown that this strategy minimizes the mean error
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Sticky Bit
Additional bit to the right of the round digit to better fine tune rounding

d0 . d1 d2 d3 . . . dp-1  0  0  0
0 .   0    0   X . . .   X     X X  S

X X  S
+

Sticky bit:  set to 1 if any 1 bits fall off
the end of the round digit

d0 . d1 d2 d3 . . . dp-1  0  0  0
0 .   0    0   X . . .   X     X X  0

X X 0
-

d0 . d1 d2 d3 . . . dp-1  0  0  0
0 .   0    0   X . . .   X     X X  1-

generates a borrow

Rounding Summary:

Radix 2 minimizes wobble in precision

Normal operations in +,-,*,/ require one carry/borrow bit + one guard digit

One round digit needed for correct rounding

Sticky bit needed when round digit is B/2 for max accuracy

Rounding to nearest has mean error = 0 if uniform distribution of digits
are assumed



cs 152  l7 Divide,FP .25 DAP ©UCB 1997

Denormalized Numbers

0 2 2 2-bias 1-bias 2-bias

B = 2, p = 4
normal numbers with hidden bit -->

denorm
gap

The gap between 0 and the next representable number is much larger
than the gaps between nearby representable numbers.

IEEE standard uses denormalized numbers to fill in the gap, maki ng the
distances between numbers near 0 more alike.

0 2 2 2-bias 1-bias 2-bias

p bits of
precision

p-1
bits of

precision

same spacing, half as many values!

NOTE:  PDP-11, VAX cannot represent subnormal numbers.  These
machines underflow to zero instead.
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Infinity and NaNs
result of operation overflows , i.e., is larger than the largest number that

can be represented

overflow is not the same as divide by zero (raises a different e xception)

+/- infinity S  1 . . . 1  0 . . . 0

It may make sense to do further computations with infinity
e.g.,  X/0  >  Y may be a valid comparison

Not a number, but not infinity (e.q. sqrt( -4))
invalid operation exception (unless operation is = or =)

NaN S  1 . . . 1  non -zero

NaNs propagate: f(NaN) = NaN
HW decides what goes here
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Summary

° Pentium: Difference between bugs that board designers must know 
about and bugs that potentially affect all users 

• Why not make public complete description of bugs in later 
category? 

• $200,000 cost in June to repair design

• $500,000,000 loss in December in profits to replace bad parts

• How much to repair Intel’s reputation?

° What is technologists responsibility in disclosing bugs?

° Bits have no inherent meaning: operations determine whether theyare 
really ASCII characters, integers, floating point numbers

° Divide can use same hardware as multiply: Hi & Lo registers in MIPS

° Floating point basically follows paper and pencil method of scie ntific 
notation using integer algorithms for multiply and divide of significands

° IEEE 754 requires good rounding; special values for NaN, Infinit y


