
cs 152 l7 Divide,FP .1 DAP ©UCB 1997

Tik-61.123 Computer Architecture
Lecture 4: Shifters, Divide, Floating Point

cs 152 l7 Divide,FP .2 DAP ©UCB 1997

MIPS logical instructions

° Instruction Example Meaning Comment
° and and $1,$2,$3 $1 = $2 & $3 3 reg. operands; Logical AND
° or or $1,$2,$3 $1 = $2 | $3 3 reg. operands; Logical OR
° xor xor $1,$2,$3 $1 = $2 ⊕ $3 3 reg. operands; Logical XOR
° nor nor $1,$2,$3 $1 = ~($2 |$3) 3 reg. operands; Logical NOR
° and immediate andi $1,$2,10 $1 = $2 & 10 Logical AND reg, constant
° or immediate ori $1,$2,10 $1 = $2 | 10 Logical OR reg, constant
° xor immediate xori $1, $2,10 $1 = ~$2 &~10 Logical XOR reg, constant
° shift left logical sll $1,$2,10 $1 = $2 << 10 Shift left by constant
° shift right logical srl $1,$2,10 $1 = $2 >> 10 Shift right by constant
° shift right arithm. sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend)
° shift left logical sllv $1,$2,$3 $1 = $2 << $3 Shift left by variable
° shift right logical srlv $1,$2, $3 $1 = $2 >> $3 Shift right by variable
° shift right arithm. srav $1,$2, $3 $1 = $2 >> $3 Shift right arith. by variable

cs 152 l7 Divide,FP .3 DAP ©UCB 1997

Shifters

Two kinds:

logical-- value shifted in is always "0"

arithmetic-- on right shifts, sign extend

msb lsb"0" "0"

msb lsb "0"

Note: these are single bit shifts. A given instruction might request
0 to 32 bits to be shifted!

cs 152 l7 Divide,FP .4 DAP ©UCB 1997

Review: Combinational Shifter from MUXes

° What comes in the MSBs?

° How many levels for 32 -bit shifter?

° What if we use 4 -1 Muxes ?

1 0sel

A B

D

Basic Building Block

8-bit right shifter

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

S2 S1 S 0A0A1A2A3A4A5A6A7

R0R1R2R3R4R5R6R7

cs 152 l7 Divide,FP .5 DAP ©UCB 1997

General Shift Right Scheme using 16 bit example

S 0
(0,1)

S 1
(0, 2)

If added Right -to-left connections could
support Rotate (not in MIPS but found in ISAs)

S 3
(0, 8)

S 2
(0, 4)

cs 152 l7 Divide,FP .6 DAP ©UCB 1997

Funnel Shifter

XY

R° Shift A by i bits
(sa= shift right amount)

° Logical: Y = 0, X=A, sa=i

° Arithmetic? Y = _, X=_, sa=_

° Rotate? Y = _, X=_, sa=_

° Left shifts? Y = _, X=_, sa=_

Instead Extract 32 bits of 64.

Shift Right

Shift Right

32 32

32

Y X

R

cs 152 l7 Divide,FP .7 DAP ©UCB 1997

Barrel Shifter

Technology-dependent solutions: transistor per switch

D3

D2

D1

D0

A6

A5

A4

A3 A2 A1 A0

SR0SR1SR2SR3

cs 152 l7 Divide,FP .8 DAP ©UCB 1997

Divide: Paper & Pencil

1001 Quotient

Divisor 1000 1001010 Dividend
–1000

10
101
1010

–1000
10 Remainder (or Modulo result)

See how big a number can be subtracted, creating quotient
bit on each step

Binary => 1 * divisor or 0 * divisor

Dividend = Quotient x Divisor + Remainder
=> | Dividend | = | Quotient | + | Divisor |

3 versions of divide, successive refinement

cs 152 l7 Divide,FP .9 DAP ©UCB 1997

DIVIDE HARDWARE Version 1

° 64-bit Divisor reg, 64-bit ALU, 64-bit Remainder reg,
32-bit Quotient reg

Remainder

Quotient

Divisor

64-bit ALU

Shift Right

Shift Left

Write
Control

32 bits

64 bits

64 bits

cs 152 l7 Divide,FP .10 DAP ©UCB 1997

2b. Restore the original value by adding the
Divisor register to the Remainder register, &
place the sum in the Remainder register. Also
shift the Quotient register to the left, setting
the new least significant bit to 0.

Divide Algorithm Version 1
°Takes n+1 steps for n -bit Quotient & Rem.

Remainder Quotient Divisor
0000 0111 0000 0010 0000

Test
Remainder

Remainder < 0Remainder • 0

1. Subtract the Divisor register from the
Remainder register, and place the result
in the Remainder register.

2a. Shift the
Quotient register
to the left setting
the new rightmost
bit to 1.

3. Shift the Divisor register right1 bit.

Done

Yes: n+1 repetitions (n = 4 here)

Start: Place Dividend in Remainder

n+1
repetition?

No: < n+1 repetitions

cs 152 l7 Divide,FP .11 DAP ©UCB 1997

Observations on Divide Version 1

° 1/2 bits in divisor always 0
=> 1/2 of 64-bit adder is wasted
=> 1/2 of divisor is wasted

° Instead of shifting divisor to right,
shift remainder to left?

° 1st step cannot produce a 1 in quotient bit
(otherwise too big)
=> switch order to shift first and then subtract,

can save 1 iteration

cs 152 l7 Divide,FP .12 DAP ©UCB 1997

DIVIDE HARDWARE Version 2

° 32-bit Divisor reg, 32-bit ALU, 64-bit Remainder reg,
32-bit Quotient reg

Remainder

Quotient

Divisor

32-bit ALU

Shift Left

Write
Control

32 bits

32 bits

64 bits

Shift Left

cs 152 l7 Divide,FP .13 DAP ©UCB 1997

Divide Algorithm Version 2
Remainder Quotient Divisor
0000 0111 0000 0010

3b. Restore the original value by adding the Divisor
register to the left half of the Remainderregister,
&place the sum in the left half of the Remainder
register. Also shift the Quotient register to the left,
setting the new least significant bit to 0.

Test
Remainder

Remainder < 0Remainder • 0

2. Subtract the Divisor register from the
left half of the Remainder register, & place the
result in the left half of the Remainder register.

3a. Shift the
Quotient register
to the left setting
the new rightmost
bit to 1.

1. Shift the Remainder register left 1 bit.

Done

Yes: n repetitions (n = 4 here)

nth
repetition?

No: < n repetitions

Start: Place Dividend in Remainder

cs 152 l7 Divide,FP .14 DAP ©UCB 1997

Observations on Divide Version 2

° Eliminate Quotient register by combining with Remainder as shifted left
• Start by shifting the Remainder left as before.

• Thereafter loop contains only two steps because the shifting of the
Remainder register shifts both the remainder in the left half and the
quotient in the right half

• The consequence of combining the two registers together and the
new order of the operations in the loop is that the remainder wi ll
shifted left one time too many.

• Thus the final correction step must shift back only the remainder in
the left half of the register

cs 152 l7 Divide,FP .15 DAP ©UCB 1997

DIVIDE HARDWARE Version 3

° 32-bit Divisor reg, 32 -bit ALU, 64-bit Remainder reg,
(0-bit Quotient reg)

Remainder (Quotient)

Divisor

32-bit ALU

Write
Control

32 bits

64 bits

Shift Left“HI” “LO”

cs 152 l7 Divide,FP .16 DAP ©UCB 1997

Divide Algorithm Version 3
Remainder Divisor
0000 0111 0010

3b. Restore the original value by adding the Divisor
register to the left half of the Remainderregister,
&place the sum in the left half of the Remainder
register. Also shift the Remainder register to the
left, setting the new least significant bit to 0.

Test
Remainder

Remainder < 0Remainder • 0

2. Subtract the Divisor register from the
left half of the Remainder register, & place the
result in the left half of the Remainder register.

3a. Shift the
Remainder register
to the left setting
the new rightmost
bit to 1.

1. Shift the Remainder register left 1 bit.

Done. Shift left half of Remainder right 1 bit.

Yes: n repetitions (n = 4 here)

nth
repetition?

No: < n repetitions

Start: Place Dividend in Remainder

cs 152 l7 Divide,FP .17 DAP ©UCB 1997

Observations on Divide Version 3

° Same Hardware as Multiply: just need ALU to add or subtract, and 63-bit
register to shift left or shift right

° Hi and Lo registers in MIPS combine to act as 64 -bit register for multiply
and divide

° Signed Divides: Simplest is to remember signs, make positive, and
complement quotient and remainder if necessary

• Note: Dividend and Remainder must have same sign

• Note: Quotient negated if Divisor sign & Dividend sign disagree
e.g., –7 ÷ 2 = –3, remainder = –1

° Possible for quotient to be too large: if divide 64-bit interger by 1,
quotient is 64 bits (“called saturation”)

cs 152 l7 Divide,FP .18 DAP ©UCB 1997

Floating-Point
° What can be represented in N bits?

° Unsigned 0 to 2

° 2s Complement - 2 to 2 - 1

° 1s Complement -2+1 to 2-1

° Excess M -M to 2 - M - 1
• (E = e + M)

° BCD 0 to 10 - 1

° But, what about?

• very large numbers? 9,349,398,989,787,762,244,859,087,678

• very small number? 0.0000000000000000000000045691
• rationals 2/3

• irrationals ¦ 2

• transcendentals e, š

N

N-1 N-1

N-1 N-1

N

N/4

cs 152 l7 Divide,FP .19 DAP ©UCB 1997

Recall Scientific Notation

6.02 x 10 1.673 x 10
23 -24

exponent

radix (base)Mantissa

decimal point

Sign, magnitude

Sign, magnitude

IEEE F.P. ± 1.M x 2
e - 127

° Issues:

• Arithmetic (+, -, *, /)

• Representation, Normal form
• Range and Precision

• Rounding

• Exceptions (e.g., divide by zero, overflow, underflow)

• Errors
• Properties (negation, inversion, if A ° B then A - B ° 0)

cs 152 l7 Divide,FP .20 DAP ©UCB 1997

Review from Prerequisties: Floating-Point Arithmetic
Representation of floating point numbers in IEEE 754 standard:

single precision
1 8 23

sign

exponent:
excess 127
binary integer

mantissa:
sign + magnitude, normalized
binary significand w/ hidden
integer bit: 1.M

actual exponent is
e = E - 127

S E M

N = (-1) 2 (1.M)
S E-127

0 < E < 255

0 = 0 00000000 0 . . . 0 -1.5 = 1 01111111 10 . . . 0

Magnitude of numbers that can be represented is in the range:

2
-126

(1.0) to 2
127

(2 - 2 23)

which is approximately:

1.8 x 10 -38 to 3.40 x 10 38

(integer comparison valid on IEEE Fl.Pt. numbers of same sign!)

cs 152 l7 Divide,FP .21 DAP ©UCB 1997

Basic Addition Algorithm
For addition (or subtraction) this translates into the following steps:

(1) compute Ye - Xe (getting ready to align binary point)

(2) right shift Xm that many positions to form Xm 2

(3) compute Xm 2 + Ym

if representation demands normalization, then a normalization step
follows:

(4) left shift result, decrement result exponent (e.g., 0.001xx…)
right shift result, increment result exponent (e.g., 101.1xx…)
continue until MSB of data is 1 (NOTE: Hidden bit in IEEE Standard)

(5) doubly biased exponent must be corrected:

Xe = 7
Ye = -3
Excess 8

extra subtraction step of the bias amount

(6) if result is 0 mantissa, may need to set the exponent to zero by
special step

Xe-Ye

Xe-Ye

Xe = 1111
Ye = 0101

10100

= 15
= 5

20

= 7 + 8
= -3 + 8

4 + 8 + 8

cs 152 l7 Divide,FP .22 DAP ©UCB 1997

Extra Bits for rounding

"Floating Point numbers are like piles of sand; every time you m ove one
you lose a little sand, but you pick up a little dirt."

How many extra bits?

IEEE: As if computed the result exactly and rounded.

Addition:

1.xxxxx 1.xxxxx 1.xxxxx

+ 1.xxxxx 0.001xxxxx 0.01xxxxx

1x.xxxxy 1.xxxxxyyy 1x.xxxxyyy
post-normalization pre -normalization pre and post

° Guard Digits: digits to the right of the first p digits of significand to
guard against loss of digits – can later be shifted left into first P places
during normalization.

° Addition: carry-out shifted in

° Subtraction: borrow digit and guard

° Multiplication: carry and guard, Division requires guard

cs 152 l7 Divide,FP .23 DAP ©UCB 1997

Rounding Digits
normalized result, but some non-zero digits to the right of the

significand --> the number should be rounded

E.g., B = 10, p = 3: 0 2 1.69

0 0 7.85

0 2 1.61

= 1.6900 * 10

= - .0785 * 10

= 1.6115 * 10

2-bias

2-bias

2-bias
-

one round digit must be carried to the right of the guard digit so that
after a normalizing left shift, the result can be rounded, according
to the value of the round digit

IEEE Standard:
four rounding modes: round to nearest (default)

round towards plus infinity
round towards minus infinity
round towards 0

round to nearest:
round digit < B/2 then truncate

> B/2 then round up (add 1 to ULP: unit in last place)
= B/2 then round to nearest even digit

it can be shown that this strategy minimizes the mean error
introduced by rounding cs 152 l7 Divide,FP .24 DAP ©UCB 1997

Sticky Bit
Additional bit to the right of the round digit to better fine tune rounding

d0 . d1 d2 d3 . . . dp-1 0 0 0
0 . 0 0 X . . . X X X S

X X S
+

Sticky bit: set to 1 if any 1 bits fall off
the end of the round digit

d0 . d1 d2 d3 . . . dp-1 0 0 0
0 . 0 0 X . . . X X X 0

X X 0
-

d0 . d1 d2 d3 . . . dp-1 0 0 0
0 . 0 0 X . . . X X X 1-

generates a borrow

Rounding Summary:

Radix 2 minimizes wobble in precision

Normal operations in +,-,*,/ require one carry/borrow bit + one guard digit

One round digit needed for correct rounding

Sticky bit needed when round digit is B/2 for max accuracy

Rounding to nearest has mean error = 0 if uniform distribution of digits
are assumed

cs 152 l7 Divide,FP .25 DAP ©UCB 1997

Denormalized Numbers

0 2 2 2-bias 1-bias 2-bias

B = 2, p = 4
normal numbers with hidden bit -->

denorm
gap

The gap between 0 and the next representable number is much larger
than the gaps between nearby representable numbers.

IEEE standard uses denormalized numbers to fill in the gap, maki ng the
distances between numbers near 0 more alike.

0 2 2 2-bias 1-bias 2-bias

p bits of
precision

p-1
bits of

precision

same spacing, half as many values!

NOTE: PDP-11, VAX cannot represent subnormal numbers. These
machines underflow to zero instead.

cs 152 l7 Divide,FP .26 DAP ©UCB 1997

Infinity and NaNs
result of operation overflows , i.e., is larger than the largest number that

can be represented

overflow is not the same as divide by zero (raises a different e xception)

+/- infinity S 1 . . . 1 0 . . . 0

It may make sense to do further computations with infinity
e.g., X/0 > Y may be a valid comparison

Not a number, but not infinity (e.q. sqrt(-4))
invalid operation exception (unless operation is = or =)

NaN S 1 . . . 1 non -zero

NaNs propagate: f(NaN) = NaN
HW decides what goes here

cs 152 l7 Divide,FP .27 DAP ©UCB 1997

Summary

° Pentium: Difference between bugs that board designers must know
about and bugs that potentially affect all users

• Why not make public complete description of bugs in later
category?

• $200,000 cost in June to repair design

• $500,000,000 loss in December in profits to replace bad parts

• How much to repair Intel’s reputation?

° What is technologists responsibility in disclosing bugs?

° Bits have no inherent meaning: operations determine whether theyare
really ASCII characters, integers, floating point numbers

° Divide can use same hardware as multiply: Hi & Lo registers in MIPS

° Floating point basically follows paper and pencil method of scie ntific
notation using integer algorithms for multiply and divide of significands

° IEEE 754 requires good rounding; special values for NaN, Infinit y

