1)

Explain the structure of the example program given below. The program is highly imaginative and no consideration towards the detailed functionality of the program will be needed. (We can examine the fuu_bar subroutine as a black box that takes the value of $a0 as an argument and returns 0 in $v0 if the value in $a0 is “correct”).
One must only describe

a) The meanings of all the labels of the program (such as .text or main:).

b) Where and how memory is being allocated.
c) The flow of the program (i.e what jumps are made and where, when the program is being exited etc.)

d) The meaning of syscall (what it does and how does it function).

e) Where would you write the needed subroutine foo_bar?

f) Where would you write the needed test-cases?

The following links might be useful while solving this exercise (But don’t stop here; the net is full of MIPS related information):

http://www.ccsc.org/midwest/presentations/VollmarSandersonPresentation.ppt

http://www.ccsc.org/midwest/presentations/VollmarSandersonPresentation.ppt

http://en.wikibooks.org/wiki/Programming:MIPS_assembly#Sections

http://cis.poly.edu/cs2214rvs/mips_programming.ppt
##

#

Computer architecture assignment XXXXXX

#

##

#

--The description of the assignment is located here---

#

##

#

Main program to test the subroutine fuu_bar()

#

 .text

 .globl main

main:

 #

 subu $sp $sp,8

 sw $ra 4($sp) # return address

 sw $fp 0($sp) # old frame pointer

 addu $fp $sp,8 # update frame pointer

 la $a0 hdr1 #here is the hdr1 loaded to a0
 jal fuu_bar
#
 bnez $v0 .failure1

.data

 #

hdr1: .word 0x4f00007c 0xa2020000 0xfd01b0d5 0x82e9e215

hdr2: .word 0x45000029 0x11520000 0xfd06a57a 0x82e9e10f 0x82e92020

array: .word 4,2,3,-1

 .text

 #

 #
.data

.ok: .asciiz "The fuu_bar() passed all tests\n"

.text

 li $v0 4

 la $a0 .ok

 syscall

 #

.exit:

 li $v0 10

 syscall

 #
.failure1:

 .data

.fail1: .asciiz " The fuu_bar() failed test 1.\n"

 .text

 li $v0 4

 la $a0 .fail1

 syscall

 j .exit

 .text

 .globl fuu_bar
 fuu_bar: #
 jr $ra

 .end

2)

Here we Practice different load-instructions. Save-instructions work in the same way.

Stuff:
.word
0x45000029 0x11520000 0x00801af4 0x82e9e10f

.word
0x202082e9 0x82e92020

a)

Let’s assume that the above Stuff-data contains normal 32-bit numbers. How do you read the third number from it and save it to register $v0?

What is the number in base 10?

b)

Let’s assume that the Stuff-data contains normal ASCII-letters. How do you read the tenth letter from it and save it to register $v1?

What is the letter in question?

c)

Let’s assume that the Stuff-data contains 64-bit numbers. How do you read the second number from it and save the result in register $v2 and $v3?

3)

Without using pseudo-instructions (ie. mul, mult...), create a subroutine, which multiplies two integers. The integers are given in registers $a0 and $a1, and the result should be returned in register $v0. You don't have to take care of overflows etc., just the basic algorithm is enough.

