A Generalization of Principal Component Analysis to the Exponential Family

Michael Collins, Sanjoy Dasgupta, and Robert E. Shcapire (NIPS2001)

Presented by Mikko Heikelä

Outline

- Introduction
- Exponential family
- Generalized linear models
- Bregman distances
- The generalization of PCA
- A minimization algorithm
- Examples

Introduction—two views of PCA

• For given data $\vec{x}_i \in \mathbf{R}^d$, find a lower dimensional subspace that minimizes the sum of squared distances between \vec{x}_i and their projections $\vec{\theta}_i$ to it:

$$\sum_{i=1}^{n} ||\vec{x}_i - \vec{\theta}_i||^2 \tag{1}$$

- Probabilistic alternative: each \vec{x}_i is seen as drawn from a unit gaussian $P_{\vec{\theta}_i}$ with unknown mean $\vec{\theta}_i$. Maximize the likelihood of the data subject to the condition that $\vec{\theta}_i$ belong to a low dimensional subspace
- Each \vec{x}_i is seen as a version of a $\vec{\theta}_i$ in a subspace, corrupted by gaussian noise.
- These are equivalent—the negative log-likelihood is (1) plus constants

Introduction—generalizing PCA?

- For nonnegative or discrete data the gaussian noise is not natural.
- Gaussian distribution is suited for real valued data. Other distributions in the exponential family can describe other types of data, e.g. Poisson—integer, Bernoulli—binary
- A general dimensionality reduction scheme for the exponential family can be devised
- The approach permits hybrid cases where the data contains different types of dimensions
- In general a crucial difference to ordinary PCA: the natural parameter space and the space of the data are not the same. A mapping between these is needed.
- This leeds us to look at generalized linear models (GLM), exponential families and Bregman distances.

Exponential Family

• Conditional probability can be written in form:

$$\log P(x|\theta) = \log P_o(x) + x\theta - G(\theta)$$
(2)

- θ is the natural parameter
- $G(\theta)$ provides normalization

$$\implies G(\theta) = \log \sum_{x \in \chi} P_0(x) e^{x\theta}$$
(3)

• The derivative of $G(\theta)$, which is denoted by $g(\theta)$ gives the expectation value of x given the parameter value θ .

$$g(\theta) \doteq G'(\theta) = E[x|\theta] \tag{4}$$

• $g(\theta)$ is called the expectation parameter.

Exponential Family—Examples

Normal distribution

- $\log P(x|\theta) = -\log \sqrt{2\pi} \frac{1}{2}(x-\theta)^2$
- $\log P_0(x) = -\log \sqrt{2\pi} x^2/2$, $\theta = \mu$, and $G(\theta) = \theta^2/2$

Bernoulli distribution

- $P(x|p) = p^x (1-p)^{(1-x)}$, where $p \in [0,1]$
- $\log P_0(x) = 1$, $\theta = \log \frac{p}{1-p}$, and $G(\theta) = \log(1+e^{\theta})$

Generalized Linear Models

The regression setup: a group of training samples (\vec{x}_i, y_i) is given. The problem is to predict y when given \vec{x} .

Linear regression:

- y_i is approximated by $ec{eta}\cdotec{x}_i$
- The parameter $ec{eta}$ is set to $rgmin_{ec{eta}\in\mathbf{R}^d}\sum_i(y_i-ec{eta}\cdotec{x}_i)^2$

Generalized linear model:

- $h(ec{eta} \cdot ec{x}_i)$ is taken to approximate the expectation parameter of the exponential model
- h is the inverse of the "link function". The coice h = g is called "canonical link"
- With canonical link $\vec{\beta} \cdot \vec{x_i}$ is directly an approximation for the natural parameters of the exponential model.

Bregman Distances

Let $F : \Delta \to \mathbf{R}$ be differentiable and strictly convex in a convex set $\Delta \subset \mathbf{R}$. Bregman distance associated with F, defined for points $p, q \in \Delta$ is

$$B_F(p||q) \doteq F(p) - F(q) - f(q)(p-q)$$
(5)

where f(x) = F'(x).

- For exponential family the log-likelihood $\log P(x|\theta)$ is related to a Bregman distance.
- Define a "dual" F through G by

$$F(g(\theta)) + G(\theta) = g(\theta)\theta \tag{6}$$

• It turns out that

$$-\log P(x|\theta) = -\log P_0(x) - F(x) + B_F(x||g(\theta))$$
(7)

From probability distribution to Bregman distance

	normal	Bernoulli	Poisson
X	\mathbb{R}	$\{0,1\}$	$\{0, 1, 2 \dots \infty\}$
$G(\theta)$	$\theta^2/2$	$\log(1+e^{\theta})$	e^{θ}
g(heta)	θ	$\frac{e^{\theta}}{(1+e^{\theta})}$	e^{θ}
F(x)	$x^{2}/2$	$x\log(x) + (1-x)\log(1-x)$	$x\log(x) - x$
$f(x) = g^{-1}(x)$	x	$\log \frac{x}{1-x}$	$\log x$
$B_F(p \parallel q)$	$(p-q)^2/2$	$p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q}$	$p \log \frac{p}{q} + q - p$
$B_F(x \parallel g(\theta))$	$(x-\theta)^2/2$	$\log(1 + e^{-x^*\theta})$ where $x^* = 2x - 1$	$e^{\theta} - x\theta + x\log x - x$

Generalized PCA—Concepts

The idea is to find natural parameters $\vec{\theta}_i$ that are close to the data \vec{x}_i , and lie on a low dimensional subspace.

More formally:

- Search for a basis $\vec{v}_1, \ldots, \vec{v}_l$ in \mathbf{R}^d
- Represent each $\vec{\theta_i}$ as the linear combination of these elements $\vec{\theta_i} = \sum_k a_{ik} \vec{v_k}$ that is "closest" to $\vec{x_i}$.

Let X be the $n \times d$ matrix with rows \vec{x}_i . Let V be the $l \times d$ matrix with rows \vec{v}_k , and A the $n \times l$ matrix with elements a_{ik} . Then the natural parameters $\vec{\theta}_i$ are in the rows of the matrix $\Theta = AV$.

Generalized PCA—Concepts

- The natural parameters Θ define the conditional probability of the data.
- The negative log-likelihood is taken as the loss function

$$L(\mathbf{V}, \mathbf{A}) = -\log P(\mathbf{X}|\mathbf{A}, \mathbf{V}) = -\sum_{i} \sum_{j} \log P(x_{ij}|\theta_{ij})$$
(8)

• Equation (7) leads to the following form for the loss function

$$L(\mathbf{V}, \mathbf{A}) = \sum_{i} \sum_{j} B_F(x_{ij} || g(\theta_{ij})) = \sum_{i} B_F(\vec{x}_i || g(\vec{\theta}_i))$$
(9)

The generalized PCA can be seen as a search for low dimensional surface $Q(\mathbf{V})$, that passes near all the points \vec{x}_i (in terms of the Bregman distance B_F), given by by $Q(\mathbf{V}) = \{g(\vec{a}\mathbf{V}) | \vec{a} \in \mathbf{R}^l\}$.

T-122.102 Co-occurrence methods in analysis of discrete data

Generalized PCA—Summary

- The loss function is the negative log likelihood
- The matrix $\Theta = \mathbf{AV}$ is the matrix of natural parameter values
- The derivative $g(\theta)$ of $G(\theta)$ maps the natural parameters to a matrix of expectation parameters, $g(\mathbf{AV})$
- The function F is derived in terms of G, and from it further the Bregman distance B_F .
- Now the loss can be written in terms of the Bregman distances B_F alone.

Generalized PCA—a Minimization Algorithm

The simplest case: search for a one dimensional subspace (l = 1)For $i = 1 \dots n$: $a_i^{(t)} = \arg \min_{a \in \mathbb{R}} \sum_j B_F(x_{ij} || g(av_j^{(t-1)}))$ For $j = 1 \dots d$: $v_j^{(t)} = \arg \min_{v \in \mathbb{R}} \sum_i B_F(x_{ij} || g(a_i^t v))$

• n + d problems, each of which is essentially a very simple GLM regression problem.

Generalized PCA—a Minimization Algorithm

• One possibility to multiple component optimization is to cycle through the *l* components, keeping all but one fixed at any given time.

```
 \begin{array}{l} \text{//Initialization} \\ \text{Set } \mathbf{A} = \mathbf{0}, \mathbf{V} = \mathbf{0} \\ \text{//Cycle through } \ell \text{ components } N \text{ times} \\ \text{For } n = 1, \ldots, N, c = 1, \ldots, \ell : \\ \text{//Now optimize the } c'\text{th component with other components fixed} \\ \text{Initialize } \mathbf{v}_c^{(0)} \text{ randomly, and set } s_{ij} = \sum_{k \neq c} a_{ik} v_{kj} \\ \text{For } t = 1, \ldots, \text{ convergence} \\ \text{For } i = 1, \ldots, n, \qquad a_{ic}^{(t)} = \arg\min_{a \in \mathbb{R}} \sum_j B_F \left( x_{ij} \parallel g(av_{cj}^{(t-1)} + s_{ij}) \right) \\ \text{For } j = 1 \ldots d, \qquad v_{cj}^{(t)} = \arg\min_{v \in \mathbb{R}} \sum_i B_F \left( x_{ij} \parallel g(a_{ic}^{(t)}v + s_{ij}) \right) \end{array}
```

Examples—**Exponential distribution**

- Given nonnegative data $\mathbf{X} \in \mathbf{R}^{n imes d}$ we want the best one dimensional approximation
- Find a vector \vec{v} and coefficients \vec{a} such that the approximation $\vec{x}_i \approx g(a_i \vec{v})$ has minimum loss
- Closed form update rule turns out to be

$$\frac{1}{\vec{v}} \longleftarrow \frac{n}{d} \mathbf{X}^T \cdot \frac{1}{\mathbf{X}\vec{v}},\tag{10}$$

where $\frac{1}{\vec{v}}$ means componentwise reciprocal

- The link function in this case is $g(\theta) = -\frac{1}{\theta}$ (naturally the mean of the distribution).
- Thus points of the form $g(a_i \vec{v})$ lie on a straight line and comparison to ordinary PCA becomes meaningful

Examples—**Exponential distribution**

• A mapping of $\{0,1\}^3$ cube to one dimension via the generalized PCA

• Here the linear subspace of the natural parameter space is mapped by $g(\theta)$ to a nonlinear curve in the cube. Note the symmetry around (1/2, 1/2, 1/2)