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Introduction—two views of PCA

e For given data #; € RY, find a lower dimensional subspace that minimizes the sum of squared
distances between &; and their projections 8; to it:

> 1E — 63| (1)
1=1

e Probabilistic alternative: each I; is seen as drawn from a unit gaussian P5 with unknown
(2

mean 9_; Maximize the likelihood of the data subject to the condition that 9_; belong to a low
dimensional subspace

e Each &; is seen as a version of a 6; in a subspace, corrupted by gaussian noise.

e These are equivalent—the negative log-likelihood is (1) plus constants
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Introduction—generalizing PCA?

e For nonnegative or discrete data the gaussian noise is not natural.

e Gaussian distribution is suited for real valued data. Other distributions in the exponential
family can describe other types of data, e.g. Poisson—integer, Bernoulli—binary

e A general dimensionality reduction scheme for the exponential family can be devised
e The approach permits hybrid cases where the data contains different types of dimensions

e In general a crucial difference to ordinary PCA: the natural parameter space and the space of
the data are not the same. A mapping between these is needed.

e This leeds us to look at generalized linear models (GLM), exponential families and Bregman
distances.
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Exponential Family

e Conditional probability can be written in form:
log P(x|0) = log P,(x) + x0 — G(0) (2)

e 0 is the natural parameter
e (G(60) provides normalization

— G(0) =log »  Po(w)e™ (3)

reX

e The derivative of G(6), which is denoted by g(6) gives the expectation value of x given the
parameter value 6.

g9(0) = G'(0) = E[z|0] (4)

e ¢(0) is called the expectation parameter.
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Exponential Family—Examples

Normal distribution

e log P(z|0) = —log V21 — 3(z — 6)°
o log Py(z) = —log V2w — x*/2, 0 = p, and G(6) = 6°/2

Bernoulli distribution

o P(z|p) = p"(1—p)"'™*), where p € [0, 1]
e log Py(z) =1, 6 =log 1=, and G(0) = log(1 + e?)
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Generalized Linear Models

The regression setup: a group of training samples (Z;, y;) is given. The problem is to predict
y when given .

Linear regression:

® y; is approximated by E T;
e The parameter 3 is set to arg min g pa Yo (yi—pB- z;)?

Generalized linear model:

° h(g @;) is taken to approximate the expectation parameter of the exponential model
e h is the inverse of the “link function”. The coice h = g is called “canonical link”

e With canonical link 5 x; is directly an approximation for the natural parameters of the
exponential model.
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Bregman Distances

Let F' : A — R be differentiable and strictly convex in a convex set A C R. Bregman
distance associated with F', defined for points p,q € A is

Br(pllq) = F(p) — F(q) — f(a)(p — q) (5)

where f(z) = F'(x).

e For exponential family the log-likelihood log P(x|@) is related to a Bregman distance.
e Define a “dual” F through G by

F(g(0)) + G(0) = g(0)0 (6)
e It turns out that

— log P(z]0) = — log Po(z) — F(z) + Br(z|[g(0)) (7)
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From probability distribution to Bregman distance

normal Bernoulli Poisson
X 113 {0,1} 03,2807
G(#) 6% /2 log(1 +¢") e?
g(t 0 .{,.{*ja) e’
F(x) 7 f2 rlog(z)+ (1 —z)log(l — x) rlog(r) —x
fx)=9g""(z) || x log %= log x
Br(p | q) (p—q)°/2 | plog 2 + (1—p)log == plogZ+q—p
Br(z || g@) || (z—6)2/2 | log(l +e = ?)wherez* =22 —1 | ¢’ — 26 + zlogz — x
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Generalized PCA—Concepts

The idea is to find natural parameters 9_; that are close to the data &;, and lie on a low

dimensional subspace.

More formally:

e Search for a basis ©1,. .. ,7; in R?
e Represent each 9_; as the linear combination of these elements 9_; = > . @ikUj thatis “closest”
to I;.

Let X be the n X d matrix with rows Z;. Let V be the I X d matrix with rows Uy, and A the
n X | matrix with elements a;;. Then the natural parameters 6, are in the rows of the matrix

® = AV.
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Generalized PCA—Concepts

e The natural parameters ® define the conditional probability of the data.

e The negative log-likelihood is taken as the loss function

L(V,A) = —log P(X|A,V) = =) Y " log P(;;|6;;) (8)
(A
e Equation (7) leads to the following form for the loss function

LV, A) =33 Brlayll 9(0:)) = Y Br(@l| 9(0) )

7

The generalized PCA can be seen as a search for low dimensional surface Q(V), that passes
near all the points &; (in terms of the Bregman distance Bpr), given by by Q(V) = {g(aV)|a €
R'}.
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Generalized PCA—Summary

e The loss function is the negative log likelihood
e The matrix ® = AV is the matrix of natural parameter values

e The derivative g(0) of G(6) maps the natural parameters to a matrix of expectation
parameters, g(AV)

e The function F' is derived in terms of (G, and from it further the Bregman distance Bp.

e Now the loss can be written in terms of the Bregman distances B alone.
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Generalized PCA—a Minimization Algorithm

The simplest case: search for a one dimensional subspace (I = 1)

Fore=1...n: agt) — arg minaERZj BF(CUij||g(CL’U§t_1)))
Foryg =1...d: Uﬁt) = arg minvERZ@ BF(CUq;ng(CLE’U)

e n + d problems, each of which is essentially a very simple GLM regression problem.
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Generalized PCA—a Minimization Algorithm

e One possibility to multiple component optimization is to cycle through the [ components,
keeping all but one fixed at any given time.

//Initialization
Set A=0. V=0
//Cycle through ¢/ components NV times
Forn=1,.... N,c=1,....,¢:
//Now optimize the ¢’th component with other components fixed

. e as ()
Initialize v, " randomly, and set 5;; = Z poro ikl

Fort = 1,...,convergence
y 5 RN gL il (1)
Fori=1,...,n, a;, =argmin Z; By (.f..” | glavg,” " + 8i; ))
- I I (B s
Bot § =1 ... d, U,; =argmin _p Z; Bpr (,f_.”- | g(a; v+ *"i;;))
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Examples—Exponential distribution

e Given nonnegative data X € R™*? we want the best one dimensional approximation

e Find a vector U and coefficients @ such that the approximation &; =~ g(a;¥) has minimum
loss

o Closed form update rule turns out to be

1 n 1
= =X, (10)
v d XU
where % means componentwise reciprocal
e The link function in this case is g(6) = —3 (naturally the mean of the distribution).

e Thus points of the form g(a;¥) lie on a straight line and comparison to ordinary PCA becomes
meaningful
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Examples—Exponential distribution
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Examples—Bernoulli distribution
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e A mapping of {0, 1}° cube to one dimension via the generalized PCA

e Here the linear subspace of the natural parameter space is mapped by g(6) to a nonlinear
curve in the cube. Note the symmetry around (1/2,1/2,1/2)
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