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Introduction—two views of PCA

• For given data ~xi ∈ R
d, find a lower dimensional subspace that minimizes the sum of squared

distances between ~xi and their projections ~θi to it:

n∑

i=1

||~xi − ~θi||2 (1)

• Probabilistic alternative: each ~xi is seen as drawn from a unit gaussian P~θi
with unknown

mean ~θi. Maximize the likelihood of the data subject to the condition that ~θi belong to a low

dimensional subspace

• Each ~xi is seen as a version of a ~θi in a subspace, corrupted by gaussian noise.

• These are equivalent—the negative log-likelihood is (1) plus constants
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Introduction—generalizing PCA?

• For nonnegative or discrete data the gaussian noise is not natural.

• Gaussian distribution is suited for real valued data. Other distributions in the exponential

family can describe other types of data, e.g. Poisson—integer, Bernoulli—binary

• A general dimensionality reduction scheme for the exponential family can be devised

• The approach permits hybrid cases where the data contains different types of dimensions

• In general a crucial difference to ordinary PCA: the natural parameter space and the space of

the data are not the same. A mapping between these is needed.

• This leeds us to look at generalized linear models (GLM), exponential families and Bregman

distances.
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Exponential Family

• Conditional probability can be written in form:

log P (x|θ) = log Po(x) + xθ −G(θ) (2)

• θ is the natural parameter

• G(θ) provides normalization

=⇒ G(θ) = log
∑

x∈χ

P0(x)e
xθ

(3)

• The derivative of G(θ), which is denoted by g(θ) gives the expectation value of x given the

parameter value θ.

g(θ)
.
= G

′
(θ) = E[x|θ] (4)

• g(θ) is called the expectation parameter.
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Exponential Family—Examples

Normal distribution

• log P (x|θ) = − log
√

2π − 1
2(x − θ)2

• log P0(x) = − log
√

2π − x2/2, θ = µ, and G(θ) = θ2/2

Bernoulli distribution

• P (x|p) = px(1− p)(1−x), where p ∈ [0, 1]

• log P0(x) = 1, θ = log p
1−p, and G(θ) = log(1 + eθ)
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Generalized Linear Models

The regression setup: a group of training samples (~xi, yi) is given. The problem is to predict

y when given ~x.

Linear regression:

• yi is approximated by ~β · ~xi

• The parameter ~β is set to arg min~β∈Rd

∑
i(yi − ~β · ~xi)

2

Generalized linear model:

• h(~β · ~xi) is taken to approximate the expectation parameter of the exponential model

• h is the inverse of the “link function”. The coice h = g is called “canonical link”

• With canonical link ~β · ~xi is directly an approximation for the natural parameters of the

exponential model.
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Bregman Distances

Let F : ∆ → R be differentiable and strictly convex in a convex set ∆ ⊂ R. Bregman

distance associated with F , defined for points p, q ∈ ∆ is

BF(p||q) .
= F (p)− F (q)− f(q)(p − q) (5)

where f(x) = F ′(x).

• For exponential family the log-likelihood log P (x|θ) is related to a Bregman distance.

• Define a “dual” F through G by

F (g(θ)) + G(θ) = g(θ)θ (6)

• It turns out that

− log P (x|θ) = − log P0(x) − F (x) + BF(x||g(θ)) (7)
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From probability distribution to Bregman distance
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Generalized PCA—Concepts

The idea is to find natural parameters ~θi that are close to the data ~xi, and lie on a low

dimensional subspace.

More formally:

• Search for a basis ~v1,. . . ,~vl in R
d

• Represent each ~θi as the linear combination of these elements ~θi =
∑

k aik~vk that is “closest”

to ~xi.

Let X be the n × d matrix with rows ~xi. Let V be the l × d matrix with rows ~vk, and A the

n × l matrix with elements aik. Then the natural parameters ~θi are in the rows of the matrix

Θ = AV.
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Generalized PCA—Concepts

• The natural parameters Θ define the conditional probability of the data.

• The negative log-likelihood is taken as the loss function

L(V, A) = − log P (X|A, V) = −
∑

i

∑

j

log P (xij|θij) (8)

• Equation (7) leads to the following form for the loss function

L(V, A) =
∑

i

∑

j

BF(xij|| g(θij)) =
∑

i

BF(~xi|| g(~θi)) (9)

The generalized PCA can be seen as a search for low dimensional surface Q(V), that passes

near all the points ~xi (in terms of the Bregman distance BF ), given by by Q(V) = {g(~aV)|~a ∈
R

l}.
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Generalized PCA—Summary

• The loss function is the negative log likelihood

• The matrix Θ = AV is the matrix of natural parameter values

• The derivative g(θ) of G(θ) maps the natural parameters to a matrix of expectation

parameters, g(AV)

• The function F is derived in terms of G, and from it further the Bregman distance BF .

• Now the loss can be written in terms of the Bregman distances BF alone.
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Generalized PCA—a Minimization Algorithm

The simplest case: search for a one dimensional subspace (l = 1)

For i = 1 . . . n : a
(t)
i = arg mina∈R

∑
j BF(xij||g(av

(t−1)
j ))

For j = 1 . . . d : v
(t)
j = arg minv∈R

∑
i BF(xij||g(at

iv)

• n + d problems, each of which is essentially a very simple GLM regression problem.

T-122.102 Co-occurrence methods in analysis of discrete data 13



Generalized PCA—a Minimization Algorithm

• One possibility to multiple component optimization is to cycle through the l components,

keeping all but one fixed at any given time.
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Examples—Exponential distribution

• Given nonnegative data X ∈ R
n×d we want the best one dimensional approximation

• Find a vector ~v and coefficients ~a such that the approximation ~xi ≈ g(ai~v) has minimum

loss

• Closed form update rule turns out to be

1

~v
←− n

d
X

T · 1

X~v
, (10)

where 1
~v means componentwise reciprocal

• The link function in this case is g(θ) = −1
θ (naturally the mean of the distribution).

• Thus points of the form g(ai~v) lie on a straight line and comparison to ordinary PCA becomes

meaningful
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Examples—Exponential distribution
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Examples—Bernoulli distribution

• A mapping of {0, 1}3 cube to one dimension via the generalized PCA

• Here the linear subspace of the natural parameter space is mapped by g(θ) to a nonlinear

curve in the cube. Note the symmetry around (1/2, 1/2, 1/2)
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