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Main topic:

� LDA: generative model for discrete data (e.g. text)

� generalization/improvement to: 
  naive Bayes/unigram, unigram mixture, PLSI

Subtopics:

� generative model: 
  document = mixture of topics, mixture proportions = latent variable 

� variational algorithms for inference + learning

� experiments

� another interpretation: multinomial PCA

� deriving clustering algorithms

� diagnostics

Contents1



�

 k latent topics = prototype word distributions

    To generate a document (length N ): 

     1. sample weights for a mixture of topics
     2. two interpretations for the same thing:
            a) sample all the words from the corresponding 
                mixture of word distributions 
            b) to generate a word, choose a topic, then a
                word from its word distribution

 

LDA: Generative model
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� probability of a document ( = word vector w ):

� does not generate document lengths

LDA: Generative model, continued3
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� mixture of unigrams: each document generated by 1 topic

�

 only 1 parameter less than LDA (          vs.    )

LDA: Related Models
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� pLSI: document index and word are independent given the topic

�

 in pLSI,    is just a document index, and              contains the  complexity    
                         learned for training documents only, separate parameters 
             for each document
             not fully generative, complexity grows with data size
             may have overfitting problems

�

 in LDA,                     , and                is simply the z:th element of                   
            a generic model for documents, not just for training data
 

LDA: Related Models 2
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� Likelihood infeasible to compute exactly (hypergeometric function):

� variational approximation:

� lower bound is computable & differentiable
            bound can be maximized 
            to approximate

LDA: Inference
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� variational EM Algorithm: maximize lower bound on log-likelihood

� E step: coordinate ascent (maximize probability bound for 1 document)

                                                              ,

� M step: 
  
   maximize        by

  maximize         by Newton-Raphson method

LDA: Inference, continued
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�

 language modeling: text corpora TREC AP (news) and CRAN (abstracts) 

� evaluated by perplexity (inverse of per-word likelihood of text data)

LDA: Experiments 18
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� example document, topics with largest prior:

LDA: Experiments 1, continued9



� text classification: WebKB dataset

� for each class, learn a separate 
  model

� classify unseen document by 
  Bayes' rule

� here unigram models        naive Bayes

LDA: Experiments 210
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� collaborative filtering: 
  EachMovie dataset

� users indicate preferred movies 
  (user preferences comparable to 
  document words)

� task: for test users, predict 1 
  missing preference (movie) based
  on their other  preferences

� quality measure: likelihood given to 
  the true missing movies

LDA: Experiments 311



A different interpretation: Multinomial PCA12

� PCA as a 2-step generative model (Gaussian, Gaussian):

� discrete analogue (Dirichlet/Entropic, Multinomial):

                                               or

� in both cases, 1st step is a conjugate prior to 2nd (exponential family)

� latter model may restrict data to a subspace

� for PCA, 1st step can be included in covariance matrix of 2nd
                 easily solved via EM or as eigenvector problem

� for multinomial case, no such transformation is known
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Deriving clustering algorithms: preliminaries13

�  exponential family: parameters and their duals

                                                        ,

�  MAP estimate based on finite sample:
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Deriving clustering algorithms, continued14

�  It isn't known if the MAP for                   can be exactly computed�  Instead, maximize

�  Kullback-Leibler (mean-field) approximation of      by     (exp. family)

�  Kullback-Leibler approximation by product

�  If the approximation can reach the true distribution         EM algorithm
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Final clustering algorithm15

�  Model: 

�  Approximation for hidden data: product distribution 
                              ,
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Diagnostics for the algorithms16

 Reuters-21578 (news, bags-of-words)   Google Bigrams (web pages)

� expected words per component EW/C

� expected components per document EC/D

� expected components EC

entropies of probabilities 
raised to power 2



Observations17

� for Reuters-21578, documents belong to about 2 topics; 
  for Google Bigrams, depends on sample size

� on Reuters-21578, prior yielded 4x better performance than ML estimates

� unfolding of components in contrast to PCA (adds components)
                    suitable for hierarchical analysis

 several components per document  (Google bigrams: 30+ per word)
                    suitable for dimensionality reduction


