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Structure of the presentation

• Prerequisites: Gibbs sampling, probability densities concerned.

• Data

• Applied models in increasing complexity:

– Assumptions of the model, probability density

– Obtaining samples from the pdf.

– Results.

• General overview, conclusions.
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Gibbs Sampling

Sampling from (multi-dimensional) joint probability distribution is

difficult. An easier way to obtain samples is to construct a Markov chain

as follows:

1. Select random initial values for parameters Θ = (θ1, . . . θr).

2. Sample θ
(m)
1 from conditional pdf p(θ1|X, θ

(m−1)
2 , . . . θ

(m−1)
r ).

3. Sample θ
(m)
2 from conditional pdf p(θ2|X, θ

(m)
1 , . . . θ

(m−1)
r ).

4. repeat from (2).

The chain will have a stationary distribution p(θ1, . . . θr|X).

We can define very complex models and still do inference by using

the samples from the model posterior.
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Probability densities

Observations are discrete. Suitable conjugate exponential model:

• Exponential model: multinomial.

p(n|Θ) =

(

N

n1 n2 . . . nK

) K
∏

k=1

θnk

k ; N =
∑

k

nk

• Conjugate prior: Dirichlet.

D(α) = p(Θ|α) =
Γ(α0)

∏K

k=1 Γ(αk)

K
∏

k=1

θαk−1
k ; α0 =

∑

k

αk

α → 0 preference for Θ = (0 . . . 0 1 0 . . .), each k equally likely;αk = 1

uniform distribution.

Def. The posterior will be of the same form as prior.
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Data

• X : Alleles of N (diploid) individuals (i) in L loci: (x
(i,1)
l , x

(i,2)
l ).

• General assumption 1: Alleles (1,2) in certain loci are independent.

(Hardy-Weinberg equilibrium.)

• General assumption 2: The measured loci are far from each other in

the genome and can be considered independent (=complete linkage

equilibrium).

Allele= any one of a number of alternative forms of the same gene occupying a given

locus.

Locus, loci = A certain position in a chromosome, occupied by any of the alleles of

the gene
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Examples of inference problems

• What is(are) the population(s) of origin of a sample of individuals?

• Evolutionary relationships of populations?

• DNA fingerprinting: what is the probability of a false match?
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The pros of generative modelling

• In distance-based clustering methods, the results depend on the

metric. Often only visual evaluation of goodness can be made.

• A generative model describes the process which created the data.

The differences in the data can be measured in terms of the

differences of the parameters of the model.

• Bayesian framework:

– Other useful information can be incorporated via priors.

– Uncertainties within the model can be estimated.

– Model selection criteria.
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1. Model without admixture

The genotype (x
(i,1)
l , x

(i,2)
l ) of each individual (i) originates from one of

K populations.

= Hard clustering of samples into K clusters.
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Model 1

X genotypes

of the sampled

individuals

Z (unknown)

populations of

origin of the

individuals

P (unknown)

allele frequencies

in populations
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Data: Genotypes of the sampled individuals
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Model 1 - description

• p(Z, P |X) ∝ p(X |P, Z)p(P )p(Z)

• p(z(i) = k) = 1/K; where k = 1 . . .K.

• p(pkl·) ∼ D(λ1, . . . λJl
) ; where l = 1 . . . L, and

Jl is the number of distinct alleles in locus l.

– Uniform prior: λ1 = λ2 = . . . = λJl
= 1.

• p(x
(i,a)
l = j|P, Z) = p(pz(i)lj); j = 1 . . . Jl
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Model 1 - Gibbs sampling

1. Sample P (m) from p(P |X, Z(m−1)):

• p
(m)
kl· ∼ D(λ1 + nkl1, . . . , λJl

+ nklJl
), where

nklj = #
{

(i, a) : x
(i,a)
l = j and z(i) = k

}

2. Simulate z(i) from:

p(z(i) = k|X, P ) = p(x(i)|P,z(i)=k)
∑

k′ p(x(i)|P,z(i)=k′)
,

where p(x(i)|P, z(i) = k) =
∏L

l=1 pklx(i,1)pklx(i,2)

An equal prior p(z(i) = k) = 1/K is assumed.
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2. Model with admixture

The genotype of each individual is a mixture from populations.

= Probabilistic soft clustering of samples into K clusters.

• The original population of each loci l is defined individually.
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Model 2
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Data: Genotypes of the sampled individuals
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Model 2 - description

• p(Z, P, Q|X) ∝ p(X |P, Z, Q)p(Z|P, Q)p(P )p(Q).

• p(x
(i,a)
l = j|Z, P, Q) = p(p

z
(i,a)
l

lj
).

• p(z
(i,a)
l = k|P, Q) = q

(i)
k .

• p(pkl·) ∼ D(λ1, . . . λJl
); λ1 = λ2 = . . . = λJl

= 1.

• p(q(i)) ∼ D(α, . . . , α); α ∼ Unif [0, 10].
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Model 2 - Gibbs sampling

1. Sample P (m): p(p
(m)
kl· |X, Z(m−1)) ∼ D(λ1 + nkl1, . . . , λJl

+ nklJl
),

where nklj = #
{

(i, a) : x
(i,a)
l = j and z

(i,a)
l = k

}

.

2. Sample Q(m): p(q(i)|X, Z(m−1)) ∼ D(α + m
(i)
1 , . . . , α + m

(i)
K ),

where m
(i)
k = #

{

(l, a) : z
(i,a)
l = k

}

3. Sample Z(m):

p(z
(i,a)
l = k|X, P (m), Q(m)) =

q
(i)
k

p(x
(i,a)
l

|P,z
(i,a)
l

=k)
∑

k′ q
(i)

k′
p(x

(i,a)
l

|P,z
(i,a)
l

=k′)
,

where p(x
(i,a)
l |P, z

(i,a)
l = k) = p

klx
(i,a)
l

.

4. Simulate proposal α′ from N (α, σ2
α). Reject if α′ ≤ 0; otherwise

accept with the appropriate Metropolis-Hastings probability.
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Practical issues

• Due to label switching, there are K! different modes in the posterior.

• MCMC methods often do not switch between modes ⇒ we obtain

an estimate of the posterior mode (usually undesirable; in clustering

application this is what we want).

• Number of clusters K was selected using a model selection criterion

based on DIC [Spiegelhalter et al. 99] (using quite heavy

assumptions on the form of the posterior). Seems to work well,

however.
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Applications to data

Simulated data – three cases:

• A single random-mating population of size N

• Two random-mating populations of size 2N, split from a single

ancestral population. No migration.

• Admixture of populations. Two populations joined, sampled

collected after two generations of random mating.

Gives highest probability to correct amount of clusters and assigns

individuals to correct clusters.
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Taita thrush (Turdus helleri)

• Each point shows the

mean estimated ances-

try (vector q(i)) for an

individual.

• Shown as distances

from the corners.

• Individuals 1-4 appear

to be outliers (immi-

grants?)

T-122.102 Co-occurence methods in analysis of discrete data 18/23



AB HELSINKI UNIVERSITY OF TECHNOLOGY

NEURAL NETWORKS RESEARCH CENTRE

Beyond Basic Model

Modifications can be made by constructing more informative

priors.(hierarchical priors).
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Model 3. Geographic location.

Variant for estimation of immigrants.

The geographic location g(i) ∈ [1 . . .Kg] of the individuals is taken into

account.

• Place a hierarchic prior to population proportions:

q
(i)

g(i) = 1, q
(i)
k = 0; (k 6= g(i)) with probability 1 − ν;

q
(i)

g(i) = 1 − 2−t, q
(i)
j = 2−t; q

(i)
k = 0; (k 6= g(i), j) for each

j 6= g(i) with probab. 2tν

(Kg−1)
∑

G
T=0 2T

,

where t ∈ [0 . . . G], and G is the number of generations. The value of ν

is an informed guess (very small).
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Model 4. Correlated markers.

DNA is inherited in large chunks. Therefore nearby markers are usually

from the same parent.

• p(z
(i)
1 = k|r, Q) = q

(i)
k

• p(z
(i)
l+1 = k′|z

(i)
l = k, r, Q) =







exp(−dlr) + (1 − exp(−dlr))q
(i)
k′ if k′ = k

(1 − exp(−dlr))q
(i)
k otherwise

z’s along choromosome form a Markov chain. dl is the (known) distance

between markers, r the rate of mixing (log r ∼ Unif).
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Model 5. Correlated allele frequencies.

Allele frequencies in closely related populations are often similar.

• pAl· ∼ D(λ1, . . . , λJl
).

• pkl· ∼ D
(

pAl1
1−Fk

Fk
, . . . , pAlJl

1−Fk

Fk

)

• Fk effective size of population k during the time since divergence

from ancestral population. Prior ∼ Γ, truncated at 1.

• For small Fk, we are close to ancestor population A. The closer to 1

the Fk is, the further we are from A. ⇒ phylogenetic inference.
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Conclusions

• Model is the same as LDA and mPCA (next lecture’s topic).

• MCMC sampling instead of variational approximations.

• More extensive: model order selection (number of populations K)

plus many variations.

• Smaller amount of clusters K than applications of LDA.

• Better than mPCA (Buntine, private communication). (4x) Slower

but more accurate.
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