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Motivation
e kernel can be used to encode distance information betwgentsb
e useful distance depends on the problem

— how to construct a suitable kernel for a given problem?

Two approaches for kernel construction from redundant aistgresented.



1. Marginalized kernels
Designing kernels frontatent variable models

Construction steps:

1. construct goint kernel K, (z, z') for the whole model with visible and
hidden variables

2. take expectation of the joint kernel over hidden variable



Marginalized kernel

Using above steps we getarginalized kernel

e posteriorgp(h|z) andp(h’|x) are unknown in general and have to be
estimated

e suitable joint kernel depends on the problem



Marginalized kernels - an example

Sequence comparisons can be performed usingdbet kernel

K(z,z') =) cx(@)er(z),

on(z) = — 3" I(ai = b)

e ci(x) is the percentage of occurences of symbol sequence.
e count kernel is succesfully used in text processing litesat

e for biological sequences we need also context information



Constructing a joint kernel
e DNA structure can be represented by four symbols (A,C,Gdeautides)
e DNA is divided in coding and non-coding regions
e this information is typically hidden for genomic sequences

Let us study genomic sequene@nd indicatorh with 1 and 2 denoting coding
and non-coding region for the corresponding nucleotide:

h=122122122
X =ACGGTTCAA



Constructing a joint kernel
e denote z=(x,h) as a’joint variable’

e represent the joint kernel for visible nucleotide and hrddentext
information as

K. ( chkl 2)cki(z
cki(z) = — Zl(xi =k, h; =1).

e this has the same form as the usual count kernel.



Marginalizing the joint kernel

Marginalizing the joint kernel over hidden variables we éav

= p(hjz)p(b|0)K.(2,2') = 3 yual@)mala’),

h,h’ k.l

where

Yii(z ZZp (hi|z)I =1).

e unknownp(h;|z) can be straightforwardly estimated using HMM

e suitable HMMs are readily available for biological sequesc
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Fisher kernel

Fisher kernel is defined by

Ke(z,z') = s(z,0) Z7(6")s(z, 8",

with Fisher score

s(z,0') = Vologp(z|0')

and Fisher information matrix

Z(0") = E[s(z,0")s(z,0)"|0"].
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Connection to Fisher kernel
Let us adopt a latent variable modgglk|0) = >, p(x, h|6).

The Fisher score now takes the form
s(z,0") = Vologp(x|6')

= Volog Y p(z,h|d)
h

=Y _p(hlz,0")Vologp(z, h|6").
h

The corresponding Fisher kernel is

K(z,z') = s(z,0)" Z(0)""(8')s(x, 8")
= Vologp(z|0')" Z(8") ™ Velogp(z|6')

— 5" p(hla, 6)p(k'|2', ') K. (2, 2')

h,h!
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Connection to Fisher kernel

We notice that for the Fisher kernel, the joint kernel is diésed as

K.(z,2") = Vglogp(z, h|0)" Z(0") ' Velogp(z', h'|0").

— Fisher kernel is a special case of marginalized kernel$, thé above joint
kernel.
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Evaluation of marginalized kernels
e the joint kernel should be designed for the given purpose.

e joint kernel and probabilistic modelx|6#) can be completely separated.
This allows utilizing higher order information with a firstaer HMM.

e useful when context information is crucial

e MCK performed better in bacterial classification in compan with the
Fisher kernel
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2. Mutual information for learning covariance kernels

Mutual information (MI) for learning covariance kernelsiin unlabeled data
e kernel should encode our notion of similarity

e clusters in probability distributio®(x) contain similar samples and samples
in different clusters are dissimilar

e mutual information is one way to represent such similarity
e mutual information can be computed for unlabeled data

— let’s derive a kernel using mutual information
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Deriving Ml-kernel
Construction steps:

1. choose model familyP(x|6)} and a prior distributiorP(6) for the
parameterg

2. fit generative models to unlabeled d&ig:

P(6|D.) < P(D,|0)P(8),

3. relying too much on unlabeled information may result ia idck of
robustness: adjust the effect of unlabeled data in the kkyamning process
usingmodel-trust scaling

Prea(0|X) xx P(Dy4|0)™P(8), X € [0, n],

4. build covariance kernel using this posterior informatio
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Definitions

Let us define joint distribution

Q(z1,72) = / Prvea(0)P(21]0) P (w2]0)d6,

whereP,,.q(0) is amediator distribution

From the joint distribution we derivisll-score

Q(wlaxQ)
Q(z1)Q(z2)’

I(z1,x2) = log

where

Qz) = /Q(a:,x')da:'.

However, this is nopositive definiteas is required for a proper kernel.
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MI-kernel by exponential embedding

To get a positive definite kernel, use exponential embedding

K(z1,22) = exp(—%[[(xl, 21) + (32, 22)] + (21, 22))

Q($1,$2) .
VQ(z1,71)Q(x2, T2)

This is calledMI kernel
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Conclusions
e itis not easy to encode our notion of similarity
e this is problem especially when data is only partially known
e kernel design is not a straightforward task

e kernel learning approaches may be useful
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