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Introduction

• Kernel methods have become popular in supervised learning

(classification, regression), but also in unsupervised learning

(clustering, PCA).

• For example, a nonlinear classifier is obtained by mapping the

data from input space into a feature space via nonlinear mapping,

and solving the classification problem in the feature space.

• The data is mapped into feature space, and a simple classifier or

function is fitted to the data

• A global solution for the optimization problem is obtained

• The parameter optimization is performed with traditional

nonlinear programming methods.
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The kernel trick

• Let’s select a mapping Φ from (continuous!) input space to

feature space as:

Φ : (x1, x2) → (x2
1,
√

2x1x2, x
2
2).

• To see that this corresponds to kernel K(x, x′) = 〈x, x′〉2:

K(x, x′) = 〈x, x′〉2 = (x1x
′
1 + x2x

′
2)

2

= (x1x
′
1)

2 + 2x1x2x
′
1x

′
2 + (x2x

′
2)

2
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(

x2
1,
√

2x1x2, x
2
2

)

,
(

x′2
1 ,

√
2x′

1x
′
2, x

′2
2

)

〉
= 〈Φ(x), Φ(x′)〉.

• The mapping Φ is not explicitly needed. Instead, one can

evaluate the value of the kernel function K(x, x′).
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Example: Nonlinear regression with SVM

• In support vector regression, the optimization problem is:

maximize −1

2

m
∑

i,j=1

(αi − α∗
i )(αi − α∗

i )K(xi, xj)

−ε
m

∑

i=1

(αi + α∗
i ) +

m
∑

i=1

yi(αi − α∗
i )

subject to
m

∑

i=1

(αi − α∗
i ) = 0, αi, α

∗
i ∈ [0, C/m],

• Once the free parameters of the objective function (αi, αi∗) are

obtained, the estimated nonlinear function becomes

f(x) =
m

∑

i=1

(αi − α∗
i )K(xi, x) + b
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Valid and good kernels

• Kernel K(x, x′) measures the similarity of x and x′.

• Valid kernel: the kernel function K(x, x′) is positive definite.

• Goodness of a kernel: completeness, correctness, appropriateness

• Completeness refers to the extent to which the knowledge

incorporated to the kernel is sufficient for solving the problem at

hand.

• Correctness refers to the extent to which the underlying

semantics of the problem are obeyed in the kernel.

• Appropriateness refers to the extent to which the examples that

are close to each other in the class membership are also close to

each other in the feature space.
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Kernels from generative models

• Let us assume that we have a set of possible states si, i = 1, ..., N ,

and a state transition matrix A of size N ×N , where Aij captures

the probability of the system to switch from state si to sj .

• A generative model for the system is of the form P (s|θ), where θ

consists of the probabilities in the matrix A.

• Let Ux be the gradient of the log-likelihood w.r.t the parameters

of the generative model P (x|θ) at x:

Ux = ∇θ log P (x|θ)

• Ux captures the rate of change of the parameters at given

observation x. Posterior distribution P (θ|x) would only provide

the most likely parameters responsible for generating the

observations.
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• A kernel that can be used to process sequences that are produced

by a generative model P (x|θ) is

K(x, x′) = UT
x Ux.

• Often, the kernel is equipped with the Fisher information matrix

I over the distribution P (x|θ):

I = E{UxUT
x },

yielding into so-called Fisher kernel:

K(x, x′) = UT
x I−1Ux.
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Diffusion kernel

• The diffusion kernels are of the form

K = eβH = lim
n→∞

(

1 +
βH

n

)n

,

where β is so-called bandwidth parameter and H is a generator.

• Differentiating with respect to β leads into differential equation

d

dβ
K(β) = HK(β).

• Selecting initial conditions K(0) = I leads into interpretation

that K(β) is the product of continuous process, expressed by H,

gradually transforming it from identity matrix K(0) to a kernel

with stronger and stronger off-diagonal effects as β increases.

9



• Choosing H to express the local structure of input data will result

in the global structure of the input data naturally emerging in K.

• Example: an undirected graph G is defined by a vertex set V and

an edge set E, where {υi, υj} ∈ E if there is an edge between

vertices υi and υj .

• A suitable generator is

Hij =















1 ,{υi, υj} ∈ E

−di ,i = j

0 ,otherwise

where di is the number of edges originating from vertex υi.
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Convolution kernels

• The semantics of the composite objects can often be captured by

a relation R between the object and its parts.

• Let ~x = x1, x2, . . . , xd denote the parts of object x, and R be a

relation on the set X1 × X2 × . . . × Xd × X .

• R(~x, x) is true iff x1, x2, . . . , xd are the parts of x.

• Let R−1(x) = {~x : R(~x, x)} be the set of parts of x.

• Let us assume, that kernel Kd(xd, x
′
d) measures the similarity of

part d of the objects x and x′.

• Then, a convolution kernel suitable for measuring the similarity

of composite objects x and x′ is:

K(x, x′) =
∑

~x∈R−1(x),~x′∈R−1(x′)

D
∏

d=1

Kd(xd, x
′
d)
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String kernels

• The similarity of two strings s1 and s2 (and thus, the value of the

kernel function K(s1, s2)) depends on the number of common

subsequences.

• Gaps within the subsequences are penalized.

• Consider two strings s1=”cat” and s2=”cart”.

• Common subsequences are “c”, “a”, “t”, “ca”, “at”, “ct”, “cat”.

• Now, the total length of occurences of these subsequences in s1

and s2 are (w.r.t s1, w.r.t s2): “c”(1,1), “a”(1,1), “t”(1,1),

“ca”(2,2), “at”(2,3), “ct”(3,4), “cat”(3,4).
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• Now, using a decay factor λ, penalties corresponding to the

subsequences become “c”: λ1λ1, “a”:λ1λ1, “t”:λ1λ1, “ca”:λ2λ2,

“at”:λ2λ3, “ct”:λ3λ4, “cat”:λ3λ4.

• Now, the value of the kernel function between two strings s1 and

s2 is the sum of the penalties:

K(“cat” , “cart”) = 2λ7 + λ5 + λ4 + 3λ2

• Computation of the value of this kind of kernels may be very

expensive.
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Tree kernels

• The instances considered in the learning task are labeled, ordered

directed subtrees.

• Consider some enumeration of all possible subtrees and let hi(T )

be the number of occurences of ith subtree in tree T .

• In order to measure the similarity of two trees T1 and T2, the

value of the kernel

K(T1, T2) =
∑

i

hi(T1)hi(T2)

can be computed.
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Basic term kernels

• Key idea: fixed type structures.

• Three kind of types: function types, product types and

constructor types.

– function types for sets and multisets

– product types for tuples

– constructors for arbitrary size structural objects (lists, trees,

etc.)

• Each type defines basic terms representing the instances of the

types.

• Abstraction is used to build instances of function type, tupling is

used to create instances of product type and application

corresponds to building objects of a type constructor.
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• Examples: basic term s represents the set {1, 2} and basic term t

represents the multiset with 42 occurences of A and 21

occurences of B:

s = λx.if x = 1 then > else if x = 2 then > else ⊥
t = λx.if x = A then 42 else if x = B then 21 else 0

• For basic abstraction r, V (r u) denotes the value of r when

applied to u. For example, V (s 2) = > and V (t C) = 0.

• Support of an abstraction is the set of terms u for which V (r u)

differs from default value. For example, supp(s) = {1, 2}.
• Now, if s and t are basic terms formed by abstraction, then a

suitable kernel to measure their similarity is:

K(s, t) =
∑

u∈supp(s),v∈supp(t)

K(V (s u), V (t v)) · K(u, v).
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Graph kernels

• A graph consist of a set of vertices, a set of edges between the

vertices, a set of labels for the vertices and a set of labels for the

edges.

• Two graphs generating a product graph are called factor graphs.

• The vertex set of the product graph is Cartesian product of the

vertex sets of the factor graphs.

• The product graph has a vertex iff the labels of the

corresponding vertices in the factor graphs are the same.

• There is an edge between two vertices in the product graph if

there is an edge between the corresponding vertices in both

factor graphs and both edges have the same label.
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• Let’s denote the edge set of the product graph by E×.

• Let’s denote an enumeration of vertex set by V = {υi},
i = 1, ..., N .

• The elemenents of the so-called adjacency matrix E× are defined

by [E×]ij = 1 ⇐⇒ (υi, υj) ∈ E×, and [E×]ij = 0 ⇐⇒
(υi, υj) 6∈ E×.

• With a sequence of weights λ0, λ1, . . . , (λi ≥ 0, ∀i), the value of

the product kernel between two graphs G1 and G2 is:

K×(G1, G2) =

|V×|
∑

i,j=1

[

∞
∑

n=0

λnEn
×

]

ij

,

where
[

En
×

]

ij
is the number of walks of length n from υi to υj .
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Conclusions

• Kernel methods, especially for structured data is a promising

research area.

• For discrete data, the problem reduces in selecting a suitable

kernel. In the literature, a lot of kernels have been proposed.

• The selection of a suitable kernel for the problem at hand is not

a trivial task.

• A lot of applications for processing sequences describing DNA,

protein, gene, speech, text, molecule, etc. are presented.
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