The Information Bottleneck Method *T-122.102 Co-occurence methods in analysis of discrete data*

Presented by Yang, Zhi-rong on 2, March 2004

Review of relevant quantization

Problem to be solved: achieve optimal quantization rate within specified distoration tolerance

$$\left\langle d(x,\tilde{x})\right\rangle_{p(x,\tilde{x})} = \sum_{x\in X} \sum_{\tilde{x}\in \tilde{X}} p(x,\tilde{x})d(x,\tilde{x})$$

quantization rate is indicated by mutual information

$$I(X; \tilde{X}) = \sum_{x \in X} \sum_{\tilde{x} \in \tilde{X}} p(x, \tilde{x}) \log \left[\frac{p(\tilde{x}|x)}{p(\tilde{x})} \right]$$

Mutual information as quantization rate

 $2^{H(X)}/2^{H(X|\tilde{X})} = 2^{I(X;\tilde{X})}$

- the average cardinality of the partitioning of X is given by the ratio of the volume of X to that of the mean partition
- Notice that this quantity is different from the entropy of the codebook, $H(\tilde{X})$, and this entropy is normally not what we want to minimize.

Review of relevant quantization (cont.)

Equation to be minimized:

$$R(D) \equiv \min_{\substack{\{p(\tilde{x}|x): \langle d(x,\tilde{x}) \rangle \le D\}}} I(X; \tilde{X})$$

or

$$\mathcal{F}[p(\tilde{x}|x)] = I(X;\tilde{X}) + \beta \left\langle d(x,\tilde{x}) \right\rangle_{p(x,\tilde{x})}$$

Equations for iteration:

$$\begin{cases} p_{t+1}(\tilde{x}) = \sum_{x} p(x) p_t(\tilde{x}|x) \\ p_t(\tilde{x}|x) = \frac{p_t(\tilde{x})}{Z_t(x,\beta)} \exp(-\beta d(x,\tilde{x})) \end{cases}$$

Problem to be solved in this paper

- relevant information in a signal $x \in X$ and another signal $y \in Y$
- to find a short code for X that preserves the maximum information about Y
- i.e. to squeeze the information that X provides about Y through a 'bottleneck' formed by a limited set of codewords \widetilde{X}
- a generalization of rate distortion theory

Functional to be minimized

$$\mathcal{L}[p(\tilde{x}|x)] = I(\tilde{X};X) - \beta I(\tilde{X};Y)$$

where β is the Lagrange multiplier attached to the constrained meaningful information.

- $I(\tilde{X};Y) \leq I(X;Y)$ to be maximized indicates the attempt of preserving the meaningful information
- As with rate and distortion, there is a tradeoff between compressing the representation and preserving meaningful information, and there is no single right solution for the tradeoff

Passing Information through Bottleneck

Information bottleneck iterative algorithn

Functional to be minimized:

 $\mathcal{F}\big[p(\tilde{x}|x); p(\tilde{x}); p(y|\tilde{x})\big] = I(\tilde{X}; X) + \beta \big\langle D_{KL}\big[p(y|x)|p(y|\tilde{x})\big]\big\rangle_{p(x,\tilde{x})}\big\rangle_{p(x,\tilde{x})}$

Self consitent equations:

$$\begin{cases} p_t(\tilde{x}|x) = \frac{p_t(\tilde{x})}{Z_t(x,\beta)} \exp(-\beta d(x,\tilde{x})) \\ p_{t+1}(\tilde{x}) = \sum_x p(x) p_t(\tilde{x}|x) \\ p_{t+1}(y|\tilde{x}) = \sum_y p(y|x) p_t(x|\tilde{x}) \end{cases} \end{cases}$$