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Example Problem

• Web log data

• D = 300 different pages on the site

• N = 100000 site visitors

• A binary (N ×D) matrix X

• Xnd tells whether visitor n loaded page d or not

• “How many visitors loaded pages A and B but not C?”

• Assume that going through the whole data set online is

unreasonably slow



Query Approximation

• Queries assumed conjunctive (extension to arbitrary Boolean

expressions straigthforward)

• Important for:

– optimization of database management systems

– interactive data mining

– prediction (!?)

• Tradeoff between:

– accuracy

– online time

– offline time

– memory



Methods

• Whole data scan

• Random data scan

• Independence model

• Chow-Liu tree model

• Mixtures of independence models

• Inclusion-exclusion model

• Maximum entropy model



Data Scan

• Whole data scan

– Given a query, simply go through the data to find the answer

– Accuracy is perfect

– Online time complexity is O(NQ) where N is the number of

data samples and Q is the size of the query

– No free parameters

• Random data scan

– Use a subset of the data as above (the number of samples is a

free parameter)

– Easy to use as an anytime algorithm



Independence Model

• Assume D attributes independent of each other:

P (x) =
∏D

d=1 P (xd)

• Collect statistics θd =
∑N

n=1 Xnd/N offline

• No free parameters

• Online time complexity is O(Q) where Q is the size of the query



Independence Example

0 0 1
0 1 1
0 1 0
0 1 0
1 0 0
1 0 0 • Data dimensions: D = 3, N = 6

• Probabilistic model: P (x1 = 1) = 1/3,

P (x2 = 1) = 1/2, P (x3 = 1) = 1/3

• Query: “How often x1 = 0 and x2 = 1?”

• Answer: (1− P (x1 = 1))P (x2 = 1) = 1/3

• Correct answer: P (x1 = 0, x2 = 1) = 1/2



Chow-Liu Tree Model

• Assume only pairwise dependencies between the D attributes

• Collect statistics θd as before and additionally:

θij =
∑N

n=1 XniXnj/N

• Compute mutual information between the attributes

• Find the minimum spanning tree (Kruskal’s algorithm)

• Transform it to a simple Bayesian network where each node has just

one parent

• Answer queries by doing standard belief propagation

• No free parameters

• Online time complexity is O(QD)



Independence and Chow-Liu Tree Models

Independence Model Chow−Liu Tree Model

• D = 8 dots represent attributes and ellipses represent explicit

distributions



Chow-Liu Example

0 0 1
0 1 1
0 1 0
0 1 0
1 0 0
1 0 0

• Mutual information:

I(X ; Y ) = H(X) + H(Y )−H(X, Y )

• Entropy: H(X) = −
∑

P (X) log P (X)

• x2 and x3 do not contain any mutual information

• Bayesian network:

x
2

x
31x

• P (x2 = 1) = 1/2

• P (x1 = 1 | x2 = 0) = 2/3, P (x1 = 1 | x2 = 1) = 0

• P (x3 = 1 | x1 = 0) = 1/2, P (x3 = 1 | x1 = 1) = 0



Mixtures of Independence Models

• Assume that data can be divided into C clusters

• Each cluster has an independence model

P (x) =
C∑

c=1

P (c)P (x | c) =
C∑

c=1

P (c)
D∏

d=1

P (xd | c) (1)

• Parameters are estimated using the EM algorithm (update P (c) and

P (x | c) alternately while assuming the other one fixed)

• The number of clusters C is a free parameter

• Online time complexity is O(QC)



Mixtures of Independence Models Example

0 0 1
0 1 1

1 0 0
1 0 0
0 1 0
0 1 0

• C = 2 clusters

• P (c = 1) = 1/3, P (c = 2) = 2/3

• P (x1 = 1 | c = 1) = 1, P (x2 = 1 | c = 1) = 0,

P (x3 = 1 | c = 1) = 0

• P (x1 = 1 | c = 2) = 0, P (x2 = 1 | c = 2) = 3/4,

P (x3 = 1 | c = 2) = 1/2

• Note: In general, the division into clusters is fuzzy



Frequent Itemsets and Queries (Theory)

• Itemset: a conjunction of positively initialized attributes

• T-frequent itemset: itemset whose count in the data is at least T

• Theorem 1: Any subset of a T-frequent itemset is T-frequent as well

• Assume that we know the frequencies of all T-frequent itemsets

• Theorem 2: A query involving only variables in a particular

T-frequent itemset can be answered exactly (without looking at the

data)

Idea of a proof: Itemset of size D has 2D − 1 nonempty subsets and

the full probability distribution has also 2D − 1 degrees of freedom



Frequent Itemsets and Queries (Practice)

• There exist well-known efficient algorithms to find frequent itemsets

• Can be done offline

• Step from frequencies to probabilistic models

• All itemsets on a single attribute are included

• The information that certain itemsets are not T-frequent, is ignored

• The parameter T is left for user to adjust model complexity

(the smaller the T the more itemsets are frequent)



Inclusion Exclusion Method

• Inclusion-exclusion principle:

P (x1 = 0, x2 . . . ) = P (x2 . . . )− P (x1 = 1, x2 . . . )

• Transform the query into a sum of terms that use only positively

initialized attributes (→ itemsets)

• Assume that all not T -frequent itemsets have frequency 0

• Use the frequencies of the T-frequent itemsets found offline

• Note: does not always correspond to any distribution P (x)

• The frequency treshold T is a free parameter

• Online time complexity is O(2Q) (worst case: query with all 0’s)



Inclusion Exclusion Example

0 0 1
0 1 1
0 1 0
0 1 0
1 0 0
1 0 0

• Select T = 1

• Frequent itemsets are {x1}, {x2}, {x3} and {x2, x3}

• Corresponding frequencies are 1/3, 1/2, 1/3 and 1/6

• Query: “How often x1 = 0 and x2 = 1?”

• Answer: P (x1 = 0, x2 = 1) =

P (x2 = 1)− P (x1 = 1, x2 = 1) = 1/2− 0 (correct)

• Note: T = 1 is low enough to always give correct

answers - in a real problem it would lead to too many

frequent itemsets



Maximum Entropy Model

• Assume T-frequent itemsets known (T is a free parameter)

• Itemset frequencies are constraints to the distribution P (x)

• Select the most uninformed of those (maximum entropy)

• Corresponds to a Markov random field (MRF) with maximal

frequent itemsets as cliques

• Online time complexity is O(F 22Q) where F is the number of

frequent itemsets



Mixture and Maximum Entropy Models

Maximum Entropy ModelMixture of Independence Models

• D = 8 dots represent attributes and ellipses represent explicit

distributions



Algorithm: Iterative Scaling

•

P (x) = µ0

∏

j

µ
I(x satisfies Vj)
j ,

where Vj are the itemsets and I is an indicator function

• µj are estimated by iteratively enforcing each constraint:

µ0 ← µ0
1− fj

1− Sj

µj ← µj

fj(1− Sj)

Sj(1− fj)
,

where fj is the ratio of the itemset Vj in the data and

Sj is the probability of the itemset Vj given the current P (x)

• Converges to the unique maximum entropy solution



Speeding Up Iterative Scaling

• Size of P (x) table is 2Q → Divide and conquer would help

• Find maximal cliques of the triangulated graph

• Place cliques into a join forest (like BN or MRF)

• Each smaller problem can be solved using iterative scaling

P (x) =

∏
P (clique)∏

P (clique intersection)



Maximum Entropy Example

0 0 1
0 1 1
0 1 0
0 1 0
1 0 0
1 0 0 • Frequent itemsets as before

• Markov Random Field:

x
2

1 3
xx

• Model: P (x1 = 1) = 1/3, P (x2 = 1, x3 = 1) = 1/6,

P (x2 = 1, x3 = 0) = 1/3, P (x2 = 0, x3 = 1) = 1/6

• In this case equivalent to the independence model,

since the connection between x2 and x3 is useless



Connections of MaxEnt to others

• If T = 0, both inclusion exclusion method and maximum entropy

method give perfect answers

• If T =∞, the maximum entropy method becomes equivalent to the

independence method

• If the frequent itemsets happen to match those of the Chow-Liu tree

model, the methods are equivalent (both in efficiency and accuracy)

• The more sparse the data, the closer the frequency treshold

approach is to the mutual information approach

(“not occuring together” does not provide much information, but

“occuring together” does)



Experiment Settings

• Microsoft Anonymous Web data set

– 32711 records

– 294 fields

– 1.02% 1’s (sparse)

• Consumer retail transactions

– 54887 records

– 52 fields

– 7.86% 1’s



Empirical Observations

• Random samples cannot compete in online efficiency with the others

• Independence model is fastest and smallest, but least accurate

• Chow-Liu provides a modest improvement over the independence

model

• Mixture models balance well memory, speed and accuracy

• Itemset inclusion-exclusion is very fast online, but requires a lot of

memory. One of the best method with sparse data but not

competitive with dense data.

• Maximum entropy is the most accurate with sparse data, but is very

slow with large queries (and requires memory)



Discussion (presenters opinions) 1/2

• Frequency not the best measure of interestingness in general?

– In sparse data, frequency of an itemset corresponds more closely

to mutual information

– MaxEnt works fine for sparse data but not with dense data

• Another formulation for a similar problem is:

“What is the distribution of future data samples?”

– Whole data scan is far from perfect (due to overfitting)

→ Makes efficiency issues less important

– Inclusion-exclusion does not work at all (does not define P (x))

– Would maximum entropy model show its true power?



Discussion (presenters opinions) 2/2

• Mixture model seems to perform well in all senses, but it might have

difficulties with high dimensionality

• Let us think of binary images with some objects as data samples

• One cluster has to model all objects in an image

• In the maximum entropy model, each object corresponds to a

frequent itemset and they are handled separately


