Association Rules

- Consider an $n \times d$ binary matrix, where the columns are random variables and the rows are observations. E.g. saleable items and supermarket customers, web pages and visitors, or words and documents:

Iraq	Korea	nuclear	mass	quantum	gravity
1	1	1	1	0	0
1	0	1	1	0	0
0	1	1	0	0	0
0	1	1	0	0	0
0	0	1	1	1	0
0	0	1	1	0	1
0	0	0	1	1	1

- Typically very sparse

Association Rules

- Task: find all "interesting" rules of the form

$$
\left\{A_{1}, A_{2}, \ldots, A_{p}\right\} \Longrightarrow B
$$

where $\left\{A_{j}\right\}$ is a subset of the variables, and B is another variable.

- Intuitive meaning: if A_{1}, \ldots, A_{p} appear on a row, then B is also likely.
- E.g. if a document mentions Iraq and weapons, it will mention mass.

Association Rules

- Formal semantics: the rule's confidence is

$$
P\left(B \mid A_{1}, \ldots, A_{p}\right)=\frac{f\left(A_{1}, \ldots, A_{p}, B\right)}{f\left(A_{1}, \ldots, A_{p}\right)} .
$$

- Problem: not all rules with high confidence are interesting; consider
- a dictionary that lists lots of unrelated words
- this presentation: I mention Iraq, quantum, and supermarket, so if no-one else mentions both Iraq and quantum, the rule

$$
\{\text { Iraq, quantum }\} \Longrightarrow \text { supermarket }
$$

has 100% confidence but is not really interesting

- Solution: a rule is interesting if it has both high confidence and high support.

Association Rules

- The rule's support is the fraction of the data where the rule holds,

$$
P\left(A_{1}, \ldots, A_{p}, B\right)=\frac{f\left(A_{1}, \ldots, A_{p}, B\right)}{n}
$$

- Now the task is to find all rules that have support over some threshold σ and confidence over some threshold γ.

Frequent Itemsets

- The association rule mining task can be reduced to finding frequent itemsets, i.e., sets of variables that have support $\geq \sigma$.
- Given such a set X, we can try all rules of the form $X \backslash\{B\} \Longrightarrow B$.
- If σ is too small, there are 2^{d} frequent itemsets.
- There can be no polynomial-time algorithm that finds all frequent itemsets from arbitrary data with arbitrary σ : even outputting the result will take exponential time.
- Of course, no-one would even want to have a list of every subset of the variables.
- A suitable value of σ depends on the data.

The Apriori Algorithm

- Suppose we know that a subset X of the variables has support s. What can we say about the supports of sets $Y \neq X$ a priori, without looking at the data?
- If $Y \subset X$, the support of Y is necessarily $\geq s$.
- Conversely, if $Y \supset X$, the support of Y is $\leq s$.
\rightarrow Support, as a set function, is antimonotonic.
- Therefore: if we know that X is not frequent, we can rule out all $Y \supset X$.
- Breadth-first search: let first $j \leftarrow 1$, then iterate

1. Form j-element candidate sets.
2. Test which candidate sets are frequent. (database scan)
3. $j \leftarrow j+1$.

The Apriori Algorithm

- How to form candidate sets?
- If $j=1$, simple: all 1-element sets are candidates, since a priori we know nothing about them.
- In general case, we have a family of j - 1-element sets and we must find all j-element sets whose all immediate subsets are in our family.
- Simple solution:
- Keep candidate and frequent set families always in lexicographic order.
- When two frequent sets differ only in the last element, make their union a "precandidate" and check whether all its subsets are frequent.
- E.g. $A B C D, A B C E, A B C F, \ldots$ yields $A B C D E, A B C D F, A B C E F$ but $A B D E, A C D E, B C D E$, etc., have to be checked.

The Apriori Algorithm

- There are much more sophisticated algorithms than Apriori, but on many real-world data sets, with realistic amounts of resulting frequent itemsets, Apriori is as good as any of the advanced algorithms.
- Data mining usually implies very large data sets; then the database pass dominates the time taken by the algorithm.
- Fundamental problem: if a, say, 20-element set is frequent, then all of its 1048575 subsets are frequent.
- There are algorithms for mining maximal frequent itemsets, i.e., only the 20 -element set would be mined, and not all of its subsets would be considered.

Back to Frequent Itemsets

- Frequent itemsets were originally invented for mining association rules, but they can also be useful in themselves.
- In the supermarket setting, association rules may be what we want: if $A \Longrightarrow B$ but not $B \Longrightarrow A$, perhaps this is related to the direction in which customers walk in the store.
- In the document setting, perhaps itemsets are more interesting.
- Both association rules and frequent itemsets are local descriptions about the data: there are some rows in the data matrix where the rule holds. Even though support and confidence can be defined in the language of probability, a collection of itemsets does not form a model of the data (at least not in any obvious way).

Using Frequent Itemsets to Answer Boolean Queries

- With huge data and a reasonable σ, the collection of frequent itemsets may be much smaller than the data.
- How to take advantage of itemsets?
- In addition to the Apriori rule $X \subset Y \Longrightarrow f(X) \geq f(Y)$, other forms of deduction are possible:

$$
\begin{aligned}
f(X) & =f(X \cup\{A\}), A \notin Y \supset X \Longrightarrow f(Y)=f(Y \cup\{A\}) \\
f(A \vee B \vee C) & =f(A)+f(B)+f(C)-f(A B)-f(B C)-f(C A)+f(A B C)
\end{aligned}
$$

Using Frequent Itemsets to Answer Boolean Queries

- The support of an arbitrary Boolean formula can be represented as a sum of supports itemsets. E.g.:
- $f(A \wedge \neg B)=f(A)-f(A B)$
$-f(A \vee \neg B)=1-f(B)+f(A B)$
$-f(A B \vee B C \vee C A)=f(A B)+f(B C)+f(C A)-2 f(A B C)$

Using Frequent Itemsets to Answer Boolean Queries

- A possible way to approximate the support of a formula is to use the itemsets whose supports are frequent (and thus known), and just forget the unknown terms.
- Proving error bounds a largely open question.
- A known special case (Bonferroni's inequality): in an inclusion-exclusion like

$$
f(A \vee B \vee C)=f(A)+f(B)+f(C)-f(A B)-f(B C)-f(C A)+f(A B C),
$$

if the known itemsets happen to be cut off at a level, the error is bounded by the next level:

$$
\begin{gathered}
{[f(A \vee B \vee C)-(f(A)+f(B)+f(C))] \leq f(A B)+f(B C)+f(C A)<3 \sigma,} \\
{[f(A \vee B \vee C)-(f(A)+f(B)+f(C)-f(A B)-f(B C)-f(C A))]} \\
\leq f(A B C)<\sigma
\end{gathered}
$$

Using Frequent Itemsets to Answer Boolean Queries

- A solution that is (in a way) general:
- Consider the linear space whose basis vectors correspond to each possible row of the matrix (i.e., 2^{d} dimensions).
- With a data matrix, associate the vector in this space whose coordinates are the relative frequencies of the corresponding rows in the matrix.
- E.g., if 10% of the rows are [1001], the corresponding coordinate is 0.1 .
- Now a query corresponds to an inner product with a $0-1$ vector.
- Knowledge about frequent itemsets translates into equality constraints on inner products.
- Knowledge that an itemset is not frequent translates into an inequality constraint.
- Linear programming yields optimal bounds on the support of a given query.
- Drawback: complexity

Using Frequent Itemsets to Create a Model

- Modeling: approximating the joint distribution
- Frequent itemsets constrain the joint distribution somewhat, but do not (usually) determine it completely.
- Principle of Insufficient Reason: choose the distribution that has maximum entropy among all distributions that satisfy the constraints.
- The elements of the probability space are the possible rows of the data matrix; thus, 2^{d} elements.
- If a distribution p gives probability $p(x)$ to element x, its entropy is

$$
H(p)=-\sum_{x} p(x) \log p(x) .
$$

Maximum Entropy Models

- Constraints: $f\left(X_{j}\right)=s_{j}$ for all frequent itemsets X_{j}
- Objective: maximize $H(p)=-\sum_{x} p(x) \log p(x)$
- The maximum entropy distribution has form

$$
p(x)=\mu_{0} \prod_{j} \mu_{j}^{1\left[X_{j} \subseteq x\right]}
$$

$-1\left[X_{j} \subseteq x\right]$ is a $0-1$ function that is 1 whenever the constraint $f\left(X_{j}\right)=s_{j}$ applies to x

- each μ_{j} is a constant that can be approximated from the data
- μ_{0} normalizes the distribution

Maximum Entropy Models

- Iterative Scaling algorithm
- The distribution is represented explicitly as a vector \vec{p} of 2^{d} elements.
- Initialize to the uniform distribution $p(x)=2^{-d}$, then iterate:
* for each constraint $f\left(X_{j}\right)=s_{j}$:
- find current $f\left(X_{j}\right)=\sum_{x \supseteq X_{j}} p(x)$
- multiply each term in this sum by $s_{j} / f\left(X_{j}\right)$
- multiply all other elements in the vector \vec{p} by a number such that $\sum_{x} p(x)=1$ * test for convergence, stop if converged

Bibliography

- Agrawal, Imielinski, Swami: Mining Association Rules between Sets of Items in Large Databases. SIGMOD 1993.
- Mannila, Toivonen, Verkamo: Efficient algorithms for discovering association rules. KDD 1994.
- Zheng, Kohavi, Mason: Real World Performance of Association Rule Algorithms. KDD 2001.
- Mannila, Toivonen: Multiple Uses of Frequent Sets and Condensed Representations (Extended Abstract). KDD 1996.
- Pavlov, Mannila, Smyth: Beyond independence: Probabilistic models for query approximation on binary transaction data. UCI technical report ICS TR-01-09, 2001.

