Association Rules

• Consider an $n \times d$ binary matrix, where the columns are random variables and the rows are observations. E.g. saleable items and supermarket customers, web pages and visitors, or words and documents:

Iraq	Korea	nuclear	mass	quantum	gravity
1	1	1	1	0	0
1	0	1	1	0	0
0	1	1	0	0	0
0	1	1	0	0	0
0	0	1	1	1	0
0	0	1	1	0	1
0	0	0	1	1	1

• Typically very sparse

T-122.102 Analysis of Binary Data

Association Rules

• Task: find all "interesting" rules of the form

$$\{A_1, A_2, \ldots, A_p\} \implies B,$$

where $\{A_j\}$ is a subset of the variables, and B is another variable.

- Intuitive meaning: if A_1, \ldots, A_p appear on a row, then B is also likely.
 - E.g. if a document mentions *Iraq* and *weapons*, it will mention mass.

Association Rules

• Formal semantics: the rule's confidence is

$$P(B \mid A_1, \dots, A_p) = \frac{f(A_1, \dots, A_p, B)}{f(A_1, \dots, A_p)}.$$

- Problem: not all rules with high confidence are interesting; consider
 - a dictionary that lists lots of unrelated words
 - this presentation: I mention *Iraq*, *quantum*, and *supermarket*, so if no-one else mentions both *Iraq* and *quantum*, the rule

 $\{ Iraq, quantum \} \implies supermarket$

has 100% confidence but is not really interesting

• Solution: a rule is interesting if it has both high confidence and high support.

T-122.102 Analysis of Binary Data

Association Rules

• The rule's support is the fraction of the data where the rule holds,

$$P(A_1,\ldots,A_p,B) = \frac{f(A_1,\ldots,A_p,B)}{n}.$$

• Now the task is to find all rules that have support over some threshold σ and confidence over some threshold γ .

Frequent Itemsets

- The association rule mining task can be reduced to finding frequent itemsets, i.e., sets of variables that have support ≥ σ.
 - Given such a set X, we can try all rules of the form $X \setminus \{B\} \implies B$.
- If σ is too small, there are 2^d frequent itemsets.
 - There can be no polynomial-time algorithm that finds all frequent itemsets from arbitrary data with arbitrary σ : even outputting the result will take exponential time.
 - Of course, no-one would even want to have a list of every subset of the variables.
 - A suitable value of σ depends on the data.

T-122.102 Analysis of Binary Data

The Apriori Algorithm

- Suppose we know that a subset X of the variables has support s. What can we say about the supports of sets $Y \neq X$ a priori, without looking at the data?
 - If $Y \subset X$, the support of Y is necessarily $\geq s$.
 - Conversely, if $Y \supset X$, the support of Y is $\leq s$.
 - → Support, as a set function, is **antimonotonic**.
- Therefore: if we know that X is not frequent, we can rule out all $Y \supset X$.
- Breadth-first search: let first $j \leftarrow 1$, then iterate
 - 1. Form *j*-element candidate sets.
 - 2. Test which candidate sets are frequent. (database scan)

3. $j \leftarrow j + 1$.

T-122.102 Analysis of Binary Data

The Apriori Algorithm

- How to form candidate sets?
- If j = 1, simple: all 1-element sets are candidates, since **a priori** we know nothing about them.
- In general case, we have a family of j 1-element sets and we must find all j-element sets whose all immediate subsets are in our family.
- Simple solution:
 - Keep candidate and frequent set families always in lexicographic order.
 - When two frequent sets differ only in the last element, make their union a "precandidate" and check whether all its subsets are frequent.
 - E.g. ABCD, ABCE, ABCF, ... yields ABCDE, ABCDF, ABCEF but ABDE, ACDE, BCDE, etc., have to be checked.

The Apriori Algorithm

- There are much more sophisticated algorithms than Apriori, but on many real-world data sets, with realistic amounts of resulting frequent itemsets, Apriori is as good as any of the advanced algorithms.
- **Data mining** usually implies very large data sets; then the database pass dominates the time taken by the algorithm.
- Fundamental problem: if a, say, 20-element set is frequent, then all of its $1\,048\,575$ subsets are frequent.
- There are algorithms for mining **maximal** frequent itemsets, i.e., only the 20-element set would be mined, and not all of its subsets would be considered.

T-122.102 Analysis of Binary Data

Back to Frequent Itemsets

- Frequent itemsets were originally invented for mining association rules, but they can also be useful in themselves.
- In the supermarket setting, association rules may be what we want: if $A \implies B$ but not $B \implies A$, perhaps this is related to the direction in which customers walk in the store.
- In the document setting, perhaps itemsets are more interesting.
- Both association rules and frequent itemsets are **local** descriptions about the data: there are some rows in the data matrix where the rule holds. Even though support and confidence can be defined in the language of probability, a collection of itemsets does not form a model of the data (at least not in any obvious way).

Using Frequent Itemsets to Answer Boolean Queries

- With huge data and a reasonable σ , the collection of frequent itemsets may be much smaller than the data.
- How to take advantage of itemsets?
- In addition to the Apriori rule $X \subset Y \implies f(X) \ge f(Y)$, other forms of deduction are possible:

$$f(X) = f(X \cup \{A\}), A \notin Y \supset X \implies f(Y) = f(Y \cup \{A\})$$
$$f(A \lor B \lor C) = f(A) + f(B) + f(C) - f(AB) - f(BC) - f(CA) + f(ABC)$$

T-122.102 Analysis of Binary Data

Using Frequent Itemsets to Answer Boolean Queries

• The support of an arbitrary Boolean formula can be represented as a sum of supports itemsets. E.g.:

$$- f(A \land \neg B) = f(A) - f(AB) - f(A \lor \neg B) = 1 - f(B) + f(AB) - f(AB \lor BC \lor CA) = f(AB) + f(BC) + f(CA) - 2f(ABC)$$

Using Frequent Itemsets to Answer Boolean Queries

- A possible way to approximate the support of a formula is to use the itemsets whose supports are frequent (and thus known), and just forget the unknown terms.
 - Proving error bounds a largely open question.
 - A known special case (Bonferroni's inequality): in an inclusion-exclusion like

$$f(A \lor B \lor C) = f(A) + f(B) + f(C) - f(AB) - f(BC) - f(CA) + f(ABC),$$

if the known itemsets happen to be cut off at a level, the error is bounded by the next level:

$$[f(A \lor B \lor C) - (f(A) + f(B) + f(C))] \le f(AB) + f(BC) + f(CA) < 3\sigma,$$

$$[f(A \lor B \lor C) - (f(A) + f(B) + f(C) - f(AB) - f(BC) - f(CA))] \leq f(ABC) < \sigma$$

T-122.102 Analysis of Binary Data

Using Frequent Itemsets to Answer Boolean Queries

- A solution that is (in a way) general:
 - Consider the linear space whose basis vectors correspond to each possible row of the matrix (i.e., 2^d dimensions).
 - With a data matrix, associate the vector in this space whose coordinates are the relative frequencies of the corresponding rows in the matrix.
 - E.g., if 10% of the rows are [1001], the corresponding coordinate is 0.1.
 - Now a query corresponds to an inner product with a 0-1 vector.
 - Knowledge about frequent itemsets translates into equality constraints on inner products.
 - Knowledge that an itemset is not frequent translates into an inequality constraint.
 - Linear programming yields optimal bounds on the support of a given query.
 - Drawback: complexity

- Modeling: approximating the joint distribution
- Frequent itemsets constrain the joint distribution somewhat, but do not (usually) determine it completely.
- Principle of Insufficient Reason: choose the distribution that has maximum entropy among all distributions that satisfy the constraints.
 - The elements of the probability space are the possible rows of the data matrix; thus, 2^d elements.
 - If a distribution p gives probability p(x) to element x, its entropy is

$$H(p) = -\sum_{x} p(x) \log p(x).$$

T-122.102 Analysis of Binary Data

Maximum Entropy Models

- Constraints: $f(X_j) = s_j$ for all frequent itemsets X_j
- Objective: maximize $H(p) = -\sum_{x} p(x) \log p(x)$
- The maximum entropy distribution has form

$$p(x) = \mu_0 \prod_j \mu_j^{1[X_j \subseteq x]}$$

- $1[X_j \subseteq x]$ is a 0-1 function that is 1 whenever the constraint $f(X_j) = s_j$ applies to x
- each μ_j is a constant that can be approximated from the data
- μ_0 normalizes the distribution

Maximum Entropy Models

- Iterative Scaling algorithm
 - The distribution is represented explicitly as a vector \vec{p} of 2^d elements.
 - Initialize to the uniform distribution $p(x) = 2^{-d}$, then iterate:
 - * for each constraint $f(X_j) = s_j$:
 - · find current $f(X_j) = \sum_{x \supseteq X_j} p(x)$
 - · multiply each term in this sum by $s_j/f(X_j)$
 - · multiply all other elements in the vector \vec{p} by a number such that $\sum_{x} p(x) = 1$
 - \ast test for convergence, stop if converged

T-122.102 Analysis of Binary Data

Bibliography

- Agrawal, Imielinski, Swami: Mining Association Rules between Sets of Items in Large Databases. SIGMOD 1993.
- Mannila, Toivonen, Verkamo: Efficient algorithms for discovering association rules. KDD 1994.
- Zheng, Kohavi, Mason: Real World Performance of Association Rule Algorithms. KDD 2001.
- Mannila, Toivonen: Multiple Uses of Frequent Sets and Condensed Representations (Extended Abstract). KDD 1996.
- Pavlov, Mannila, Smyth: Beyond independence: Probabilistic models for query approximation on binary transaction data. UCI technical report ICS TR-01-09, 2001.