Association Rules

e Consider an n x d binary matrix, where the columns are random variables and the rows
are observations. E.g. saleable items and supermarket customers, web pages and visitors,
or words and documents:

Irag Korea nuclear mass quantum gravity

1 1 1 1 0 0
1 0 1 1 0 0
0 1 1 0 0 0
0 1 1 0 0 0
0 0 1 1 1 0
0 0 1 1 0 1
0 0 0 1 1 1
e Typically very sparse
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Association Rules

e Task: find all “interesting” rules of the form
{Al,AQ,...,Ap} — B,
where { A; } is a subset of the variables, and B is another variable.

e Intuitive meaning: if A;,..., A, appear on a row, then B is also likely.

— E.g. if a document mentions Irag and weapons, it will mention mass.
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Association Rules

e Formal semantics: the rule’'s confidence is
f(A1,..., Ay, B)
f(A1, ..., Ap)

P(B|Ay,..., A) =

e Problem: not all rules with high confidence are interesting; consider

— a dictionary that lists lots of unrelated words
— this presentation: | mention Irag, quantum, and supermarket, so if no-one else

mentions both /rag and quantum, the rule
{Iraq, quantum} = supermarket

has 100% confidence but is not really interesting

e Solution: a rule is interesting if it has both high confidence and high support.
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Association Rules

e The rule's support is the fraction of the data where the rule holds,

Ay, ... A, B
P(Al,...,Ap,B):f( 1, n? D> )

e Now the task is to find all rules that have support over some threshold o and confidence
over some threshold .
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Frequent Itemsets

e The association rule mining task can be reduced to finding frequent itemsets, i.e., sets
of variables that have support > o.

— Given such a set X, we can try all rules of the foom X \ { B} = B.

e If o is too small, there are 2¢ frequent itemsets.

— There can be no polynomial-time algorithm that finds all frequent itemsets from
arbitrary data with arbitrary o: even outputting the result will take exponential time.

— Of course, no-one would even want to have a list of every subset of the variables.

— A suitable value of o depends on the data.
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— Frequent sets
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The Apriori Algorithm

e Suppose we know that a subset X of the variables has support s. What can we say
about the supports of sets Y % X a priori, without looking at the data?

— If Y C X, the support of Y is necessarily > s.
— Conversely, if Y D X, the support of Y is < s.
[J Support, as a set function, is antimonotonic.

e Therefore: if we know that X is not frequent, we can rule out all Y D X.

e Breadth-first search: let first j < 1, then iterate

1. Form j-element candidate sets.
2. Test which candidate sets are frequent. (database scan)

3. j—j+ 1.
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The Apriori Algorithm

e How to form candidate sets?

o If j =1, simple: all 1-element sets are candidates, since a priori we know nothing about
them.

e In general case, we have a family of j — 1-element sets and we must find all j-element
sets whose all immediate subsets are in our family.

e Simple solution:

— Keep candidate and frequent set families always in lexicographic order.

— When two frequent sets differ only in the last element, make their union a
“precandidate” and check whether all its subsets are frequent.

- E.g. ABCD,ABCE,ABCF,... yields ABCDE,ABCDF, ABCEF
but ABDE, ACDE, BCDE, etc., have to be checked.
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The Apriori Algorithm

e There are much more sophisticated algorithms than Apriori, but on many real-world data
sets, with realistic amounts of resulting frequent itemsets, Apriori is as good as any of
the advanced algorithms.

e Data mining usually implies very large data sets; then the database pass dominates the
time taken by the algorithm.

e Fundamental problem: if a, say, 20-element set is frequent, then all of its 1048575
subsets are frequent.

e There are algorithms for mining maximal frequent itemsets, i.e., only the 20-element set
would be mined, and not all of its subsets would be considered.
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Back to Frequent ltemsets

e Frequent itemsets were originally invented for mining association rules, but they can also
be useful in themselves.

e In the supermarket setting, association rules may be what we want: if A — B but
not B — A, perhaps this is related to the direction in which customers walk in the
store.

e In the document setting, perhaps itemsets are more interesting.

e Both association rules and frequent itemsets are local descriptions about the data: there
are some rows in the data matrix where the rule holds. Even though support and
confidence can be defined in the language of probability, a collection of itemsets does
not form a model of the data (at least not in any obvious way).
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Using Frequent Itemsets to Answer Boolean Queries

e With huge data and a reasonable o, the collection of frequent itemsets may be much
smaller than the data.

e How to take advantage of itemsets?

e In addition to the Apriori rule X C Y = f(X) > f(Y), other forms of deduction are
possible:

fX)=f(XU{A}), A¢Y DX — [(Y)=[f(YU{A})
f(AVBVC) = f(A)+ f(B) + f(C) = f(AB) — f(BC) — f(CA) + f(ABC)
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Using Frequent Itemsets to Answer Boolean Queries

e The support of an arbitrary Boolean formula can be represented as a sum of supports
itemsets. E.g.:

- f(AN-B) = f(A) — f(AB)
- f(Av-B) =1~ f(B)+ f(AB)
— f(ABV BC Vv CA) = f(AB) + f(BC) + f(CA) — 2f(ABC)
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Using Frequent Itemsets to Answer Boolean Queries

e A possible way to approximate the support of a formula is to use the itemsets whose
supports are frequent (and thus known), and just forget the unknown terms.

Proving error bounds a largely open question.
A known special case (Bonferroni's inequality): in an inclusion-exclusion like

fLAVBVC) = f(A)+ f(B) + f(C) = f(AB) — f(BC) — f(CA) + f(ABC),

if the known itemsets happen to be cut off at a level, the error is bounded by the next
level:

[f(AV BV C) = (f(A)+ F(B)+ f(C))] < f(AB) + f(BC) + f(CA) < 3o,

[f(AV BV C) = (f(A)+ f(B)+ f(C) — F(AB) — f(BC) — f(CA))]
< f(ABC) < oo
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Using Frequent Itemsets to Answer Boolean Queries

e A solution that is (in a way) general:

Consider the linear space whose basis vectors correspond to each possible row of the
matrix (i.e., 2¢ dimensions).

With a data matrix, associate the vector in this space whose coordinates are the
relative frequencies of the corresponding rows in the matrix.

E.g., if 10% of the rows are [1001], the corresponding coordinate is 0.1.

Now a query corresponds to an inner product with a 0—-1 vector.

Knowledge about frequent itemsets translates into equality constraints on inner
products.

Knowledge that an itemset is not frequent translates into an inequality constraint.
Linear programming yields optimal bounds on the support of a given query.
Drawback: complexity
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Using Frequent Itemsets to Create a Model

e Modeling: approximating the joint distribution

e Frequent itemsets constrain the joint distribution somewhat, but do not (usually)
determine it completely.

e Principle of Insufficient Reason: choose the distribution that has maximum entropy
among all distributions that satisfy the constraints.

— The elements of the probability space are the possible rows of the data matrix; thus,

2¢ elements.
— If a distribution p gives probability p(z) to element x, its entropy is

Zp ) log p().
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Maximum Entropy Models

e Constraints: f(X;) = s; for all frequent itemsets X
e Objective: maximize H(p) = — ) p(x)logp(x)

e The maximum entropy distribution has form

— 1[X; C z] is a 0-1 function that is 1 whenever the constraint f(X;) = s, applies to
— each p; is a constant that can be approximated from the data
— o normalizes the distribution
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Maximum Entropy Models

e lterative Scaling algorithm

— The distribution is represented explicitly as a vector 7 of 2¢ elements.
— Initialize to the uniform distribution p(x) = 279, then iterate:
* for each constraint f(X;) = s;:
- find current f(X,) = ZmDXj p(x)
- multiply each term in this sum by s;/f(X})
- multiply all other elements in the vector p’' by a number such that }_ p(z) =1
* test for convergence, stop if converged
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