
Association Rules

• Consider an n× d binary matrix, where the columns are random variables and the rows
are observations. E.g. saleable items and supermarket customers, web pages and visitors,
or words and documents:

Iraq Korea nuclear mass quantum gravity

1 1 1 1 0 0
1 0 1 1 0 0
0 1 1 0 0 0
0 1 1 0 0 0
0 0 1 1 1 0
0 0 1 1 0 1
0 0 0 1 1 1

• Typically very sparse

T-122.102 Analysis of Binary Data 1

Association Rules

• Task: find all “interesting” rules of the form

{A1, A2, . . . , Ap } =⇒ B,

where {Aj } is a subset of the variables, and B is another variable.

• Intuitive meaning: if A1, . . . , Ap appear on a row, then B is also likely.

– E.g. if a document mentions Iraq and weapons, it will mention mass.

T-122.102 Analysis of Binary Data 2



Association Rules

• Formal semantics: the rule’s confidence is

P (B | A1, . . . , Ap) =
f(A1, . . . , Ap, B)
f(A1, . . . , Ap)

.

• Problem: not all rules with high confidence are interesting; consider

– a dictionary that lists lots of unrelated words
– this presentation: I mention Iraq, quantum, and supermarket, so if no-one else

mentions both Iraq and quantum, the rule

{ Iraq, quantum } =⇒ supermarket

has 100% confidence but is not really interesting

• Solution: a rule is interesting if it has both high confidence and high support.

T-122.102 Analysis of Binary Data 3

Association Rules

• The rule’s support is the fraction of the data where the rule holds,

P (A1, . . . , Ap, B) =
f(A1, . . . , Ap, B)

n
.

• Now the task is to find all rules that have support over some threshold σ and confidence
over some threshold γ.

T-122.102 Analysis of Binary Data 4



Frequent Itemsets

• The association rule mining task can be reduced to finding frequent itemsets, i.e., sets
of variables that have support ≥ σ.

– Given such a set X, we can try all rules of the form X \ {B } =⇒ B.

• If σ is too small, there are 2d frequent itemsets.

– There can be no polynomial-time algorithm that finds all frequent itemsets from
arbitrary data with arbitrary σ: even outputting the result will take exponential time.

– Of course, no-one would even want to have a list of every subset of the variables.
– A suitable value of σ depends on the data.

T-122.102 Analysis of Binary Data 5

10
−3

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

Threshold σ

N
um

be
r 

of
 s

et
s

Frequent sets
Frequent sets + border

T-122.102 Analysis of Binary Data 6



The Apriori Algorithm

• Suppose we know that a subset X of the variables has support s. What can we say
about the supports of sets Y 6= X a priori, without looking at the data?

– If Y ⊂ X, the support of Y is necessarily ≥ s.
– Conversely, if Y ⊃ X, the support of Y is ≤ s.

➜ Support, as a set function, is antimonotonic.

• Therefore: if we know that X is not frequent, we can rule out all Y ⊃ X.

• Breadth-first search: let first j ← 1, then iterate

1. Form j-element candidate sets.
2. Test which candidate sets are frequent. (database scan)
3. j ← j + 1.

T-122.102 Analysis of Binary Data 7

The Apriori Algorithm

• How to form candidate sets?

• If j = 1, simple: all 1-element sets are candidates, since a priori we know nothing about
them.

• In general case, we have a family of j − 1-element sets and we must find all j-element
sets whose all immediate subsets are in our family.

• Simple solution:

– Keep candidate and frequent set families always in lexicographic order.
– When two frequent sets differ only in the last element, make their union a

“precandidate” and check whether all its subsets are frequent.
– E.g. ABCD,ABCE,ABCF, . . . yields ABCDE, ABCDF, ABCEF

but ABDE, ACDE, BCDE, etc., have to be checked.

T-122.102 Analysis of Binary Data 8



The Apriori Algorithm

• There are much more sophisticated algorithms than Apriori, but on many real-world data
sets, with realistic amounts of resulting frequent itemsets, Apriori is as good as any of
the advanced algorithms.

• Data mining usually implies very large data sets; then the database pass dominates the
time taken by the algorithm.

• Fundamental problem: if a, say, 20-element set is frequent, then all of its 1 048 575
subsets are frequent.

• There are algorithms for mining maximal frequent itemsets, i.e., only the 20-element set
would be mined, and not all of its subsets would be considered.

T-122.102 Analysis of Binary Data 9

Back to Frequent Itemsets

• Frequent itemsets were originally invented for mining association rules, but they can also
be useful in themselves.

• In the supermarket setting, association rules may be what we want: if A =⇒ B but
not B =⇒ A, perhaps this is related to the direction in which customers walk in the
store.

• In the document setting, perhaps itemsets are more interesting.

• Both association rules and frequent itemsets are local descriptions about the data: there
are some rows in the data matrix where the rule holds. Even though support and
confidence can be defined in the language of probability, a collection of itemsets does
not form a model of the data (at least not in any obvious way).

T-122.102 Analysis of Binary Data 10



Using Frequent Itemsets to Answer Boolean Queries

• With huge data and a reasonable σ, the collection of frequent itemsets may be much
smaller than the data.

• How to take advantage of itemsets?

• In addition to the Apriori rule X ⊂ Y =⇒ f(X) ≥ f(Y ), other forms of deduction are
possible:

f(X) = f(X ∪ {A }), A /∈ Y ⊃ X =⇒ f(Y ) = f(Y ∪ {A })
f(A ∨B ∨ C) = f(A) + f(B) + f(C)− f(AB)− f(BC)− f(CA) + f(ABC)

T-122.102 Analysis of Binary Data 11

Using Frequent Itemsets to Answer Boolean Queries

• The support of an arbitrary Boolean formula can be represented as a sum of supports
itemsets. E.g.:

– f(A ∧ ¬B) = f(A)− f(AB)
– f(A ∨ ¬B) = 1− f(B) + f(AB)
– f(AB ∨BC ∨ CA) = f(AB) + f(BC) + f(CA)− 2f(ABC)

T-122.102 Analysis of Binary Data 12



Using Frequent Itemsets to Answer Boolean Queries

• A possible way to approximate the support of a formula is to use the itemsets whose
supports are frequent (and thus known), and just forget the unknown terms.

– Proving error bounds a largely open question.
– A known special case (Bonferroni’s inequality): in an inclusion-exclusion like

f(A ∨B ∨ C) = f(A) + f(B) + f(C)− f(AB)− f(BC)− f(CA) + f(ABC),

if the known itemsets happen to be cut off at a level, the error is bounded by the next
level:

[f(A ∨ B ∨ C)− (f(A) + f(B) + f(C))] ≤ f(AB) + f(BC) + f(CA) < 3σ,

[f(A ∨ B ∨ C)− (f(A) + f(B) + f(C)− f(AB)− f(BC)− f(CA))]

≤ f(ABC) < σ

T-122.102 Analysis of Binary Data 13

Using Frequent Itemsets to Answer Boolean Queries

• A solution that is (in a way) general:

– Consider the linear space whose basis vectors correspond to each possible row of the
matrix (i.e., 2d dimensions).

– With a data matrix, associate the vector in this space whose coordinates are the
relative frequencies of the corresponding rows in the matrix.

– E.g., if 10% of the rows are [1001], the corresponding coordinate is 0.1.
– Now a query corresponds to an inner product with a 0–1 vector.
– Knowledge about frequent itemsets translates into equality constraints on inner

products.
– Knowledge that an itemset is not frequent translates into an inequality constraint.
– Linear programming yields optimal bounds on the support of a given query.
– Drawback: complexity

T-122.102 Analysis of Binary Data 14



Using Frequent Itemsets to Create a Model

• Modeling: approximating the joint distribution

• Frequent itemsets constrain the joint distribution somewhat, but do not (usually)
determine it completely.

• Principle of Insufficient Reason: choose the distribution that has maximum entropy
among all distributions that satisfy the constraints.

– The elements of the probability space are the possible rows of the data matrix; thus,
2d elements.

– If a distribution p gives probability p(x) to element x, its entropy is

H(p) = −
∑

x

p(x) log p(x).

T-122.102 Analysis of Binary Data 15

Maximum Entropy Models

• Constraints: f(Xj) = sj for all frequent itemsets Xj

• Objective: maximize H(p) = −
∑

x p(x) log p(x)

• The maximum entropy distribution has form

p(x) = µ0

∏
j

µ
1[Xj⊆x]

j

– 1[Xj ⊆ x] is a 0–1 function that is 1 whenever the constraint f(Xj) = sj applies to x
– each µj is a constant that can be approximated from the data
– µ0 normalizes the distribution

T-122.102 Analysis of Binary Data 16



Maximum Entropy Models

• Iterative Scaling algorithm

– The distribution is represented explicitly as a vector ~p of 2d elements.
– Initialize to the uniform distribution p(x) = 2−d, then iterate:
∗ for each constraint f(Xj) = sj:
· find current f(Xj) =

∑
x⊇Xj

p(x)
· multiply each term in this sum by sj/f(Xj)
· multiply all other elements in the vector ~p by a number such that

∑
x p(x) = 1

∗ test for convergence, stop if converged

T-122.102 Analysis of Binary Data 17

Bibliography

• Agrawal, Imielinski, Swami: Mining Association Rules between Sets of Items in Large
Databases. SIGMOD 1993.

• Mannila, Toivonen, Verkamo: Efficient algorithms for discovering association rules.
KDD 1994.

• Zheng, Kohavi, Mason: Real World Performance of Association Rule Algorithms.
KDD 2001.

• Mannila, Toivonen: Multiple Uses of Frequent Sets and Condensed Representations
(Extended Abstract). KDD 1996.

• Pavlov, Mannila, Smyth: Beyond independence: Probabilistic models for query
approximation on binary transaction data. UCI technical report ICS TR-01-09, 2001.

T-122.102 Analysis of Binary Data 18


