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Introduction

@ The intrinsic dimension(ality) of a data set is usually
defined as the minimal number of parameters or latent
variables required to describe the data

@ We need to be able to estimate intrinsic dimensionality,
because many DR methods need it but cannot estimate it
themselves

@ How do we translate the intuitive definition into something
we can compute?

@ Topological dimension is formally exact, but hard to
estimate for real data

o Fractal dimensionality measures

@ Trial and error: ‘apply a DR method to the data, see what
dimensionality works’
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The ‘box-counting dimension’

@ Determine the hypercube that
circumscribes the data points
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The ‘box-counting dimension’
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@ Determine the hypercube that
circumscribes the data points

@ Divide the hypercube into a grid of smaller
hypercubes (‘boxes’) with edge length ¢

@ Determine N(e), the number of boxes
occupied by one or more data points.
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The ‘box-counting dimension’

@ Determine the hypercube that
7 circumscribes the data points

/ @ Divide the hypercube into a grid of smaller
hypercubes (‘boxes’) with edge length ¢

@ Determine N(e), the number of boxes
occupied by one or more data points.

@ ldea: For a D-dimensional object,

N(e) e P=D«x —7IO|%';£E)

@ Hence we define

. logN(e)
Geap = = M, Toge @
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Problems with capacity dimension

@ For areal data set, the limit cannot be
computed exactly

y 4 @ To get even a good estimate, we need

approximately 10P data points for a

D-dimensional manifold [1]
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Correlation dimension

@ Cy(¢) is the probability of two random
points in the data set being within a
distance ¢ of each other:

Cz(e)_NlinooN _1 %:H —[lyi—yjll2)

=P(llyi —yjll2<¢), (2

where H(x) = 1 if x < e and O otherwise.
@ Cy(€) x €°, so we define

. logCs(e)
Geor = lim, log e

®3)
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Estimating correlation dimension in practice

@ LHopital:
im log C»(€) —im dlog Cy(¢)
e—0 loge e—0 Jloge
_ lim Iog C2(€2) — Iog Cz(el) (4)
€1—0,e—0 log e, — log ey

@ To estimate (4), e; and e, are usually chosen from a region

where the log-log plot of C,(¢) versus ¢ is almost constant
@ Alternatively, we can calculate a second-order estimate for
the derivative: f/(x) = (X IR 4 o(Ax3)

@ Tsonis criterion: 102t%-4P points required for a good
estimate [1]
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An example of estimation

1
05 @ The dependency
° of the estimate on
05 e is a feature, not a
= bug: e represents
-1 -0.5 0 0.5 1 .
the scale at which
N we observe the
is 1 l:l:l‘:| data, and the
S 3 /-’ \j\ perceived
g 5 dimensionality
g l \ depends on that
RaT— 0 T S scale.

loge loge
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Outline of local PCA

@ Divide the data set into small patches (“space windows”)
by clustering

@ Apply PCA separately to each patch (assumption: the
manifold is locally approximately linear)

@ Estimate the dimensionality of the data as a weighted
average of the dimensionalities of the patches

@ Local PCA has the advantage that, in addition to the global
dimensionality of a data set, it can also estimate local
variations in dimensionality
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Local PCA for a noisy spiral
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Estimating dimensionality by trial and error

@ Many NLDR methods minimize some kind of
reconstruction error

@ The reconstruction error should be minimal when the
dimensionality of the projection equals the dimensionality
of the manifold

@ Thus we can try to estimate the dimensionality by
observing how the reconstruction error varies with the
dimensionality of the projection

@ Disadvantage: very high computational cost
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The data set

@ In a three-dimensional cube, 10 distance sensors are
placed at random locations

@ The data points are uniformly distributed inside the cube

@ Each data point is represented by a 10-dimensional vector,
where each component is the point’s distance to one of the
sensors

@ White Gaussian noise is added to each vector

@ Thus the data set is a (slightly noisy) 3-dimensional
nonlinear manifold embedded in 10-dimensional space
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Comparison and summary

R e T @ Tends to

0oF e overestimate

il 1 dimensionality
Nl | (this is to be
LM 1 expected, as the
EOS | depe_zndencies are
Z osf ] not linear)

o2r 1 @ Works for a small

1 number of

! T e componinnies © " observations

@ Fast
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Correlation dimension
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Local PCA
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Trial and error with Sammon’s mapping

1 @ Overestimates
dimensionality, but
not by as much as
PCA

@ Works with a small
number of
observations

@ Very slow

Reconstruction error
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Summary

@ PCA is not very accurate, but it is predictable and very fast
@ Local PCA is accurate and fast

@ Correlation dimension is slower, but it gives the dimension
on all scales
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