Exercise 14.11.2006. Marginalization paradox[Jaynes94]

Assume we have n observations of independent, positive, exponentially distributed real values $\{x_1, \ldots, x_n\}$. First ζ values have expectations $\frac{1}{\eta}$, and the remaining $n-\zeta$ have expectations $\frac{1}{c\eta}$, where $c \neq 1$. Now c is known, and ζ, η unknown.

We are interested in the value of ζ .

1° Given the likelihood

$$p(x|\zeta,\eta) = c^{n-\zeta}\eta^n \exp\{-\eta \left(\sum_{i=1}^{\zeta} x_i + c\sum_{i=\zeta+1}^n x_i\right)\}, \quad 1 \le \zeta \le n,$$

and the prior $\pi(\zeta)\pi(\eta)$, form the marginal posterior $p(\zeta|x)$. Compute the marginal posterior by assuming an improper prior $\pi(\eta) = \eta^{-k}$.

2° Alternatively, one may inspect ratios $z_i = \frac{x_i}{x_1}$, since we can then get rid of a scaling parameter η . The likelihood is then

$$p(z_1, \dots, z_n | \zeta, \eta) = \int_0^\infty c^{n-\zeta} \eta^n \exp\{-\eta x_1 \left(\sum_{i=1}^\zeta z_i + c \sum_{i=\zeta+1}^n z_i \right) \} x_1^{n-1} dx_1$$

$$= \frac{c^{n-\zeta} (n-1)!}{(\sum_{i=1}^\zeta z_i + \sum_{i=\zeta+1}^n z_i)^n} = p(z_1, \dots, z_n | \zeta).$$

Form the posterior $p(\zeta|x)$, and compare the result to 1°.

Why do the two approaches give different results? When do the approaches agree? Does the situation change if you use proper priors?