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Abstract

This paper describes work in progress. We
propose a possible approach to predicting the
structure of a molecule from its mass spectro-
gram. The main idea is to cluster molecules
based on their mass spectrogram. On these
clusters one can perform a frequent subgraph
mining algorithm to find the most frequent
substructures in these molecules. Substruc-
tures that are much more frequent in one
cluster than in others are likely to have an im-
portant influence on the mass spectrogram.
Once these substructures have been identi-
fied, they can be used in a second clustering
step to improve the clustering, after which
a new search for frequent substructures in
the new clusters can be performed. This
can be repeated until the process stabilizes,
which should lead to clusters that are co-
herent with respect to mass spectrograms as
well as those molecular substructures most
related to them. We discuss the result of a
first preliminary experiment.

1. Introduction

Learning predictive models is a very common data
mining task. In most cases, the predictive models
that are learned take as input a vector; sometimes
the input is a set, graph, or other object with com-
plex structure, in which case we speak of relational
learning. Very few learning methods, however, have
the ability to learn predictive functions where the out-
put of the function has a complex structure. This is
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sometimes called structured output prediction, or pre-
diction in structured output spaces. Many methods
that do consider this setting, are still limited to pre-
dicting a structured output value where the structure
is in fact known in advance, and only values for given
elements of the structure need to be predicted (e.g.,
the labels of nodes in a tree or graph). Predicting the
structure itself is an even harder problem. We use the
term “structure prediction” to refer to this particular
problem.

An example of the problem is predicting the struc-
ture of a molecule solely based on its mass spectro-
gram. In mass spectroscopy, molecules of a compound
are bombarded with electrons. Some break up to give
a variety of charged fragments, characteristic of the
original molecule. A mass spectrogram is basically a
histogram of the mass-to-charge ratio of the different
fragments versus the frequency. Thus, viewed as a pre-
dictive learning task, the input for a single example is
a set of (z,y) couples with = the mass-to-charge ratio
and y the frequency, and the output to predict is the
structure of the original molecule.

In earlier work (Drouillon & Blockeel, 2007) we sug-
gested two possible approaches towards solving this
problem. In this abstract we describe in more detail
one of these approaches and report on preliminary ex-
periments with it.

2. Method

A very general approach to prediction, which may be
useful for structure prediction, is predictive cluster-
ing (Blockeel, 1998). The basic idea behind predic-
tive clustering is the following: given an input space
X and output space Y, clusters are formed with high
predictiveness of X and high predictability of Y; that
is, given the projection of a new instance on X, we
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can accurately predict the cluster it belongs to, and
given the cluster an example belongs to, we can ac-
curately predict Y. Put differently, while clustering
generally tries to maximize inter-cluster-distances and
minimize intra-cluster-distances, in predictive cluster-
ing, we try to maximize inter-cluster-distances in the X
space (clusters are well-separated in the X space) and
minimize intra-cluster-distances in the Y space (clus-
ters are highly coherent in the Y space).

In the context of molecular substructure prediction,
X is the space of mass spectrograms, Y the space of
molecular structures (represented as graphs). We use
the following iterative process:

1. Cluster the molecules based on the mass spectra;

2. Mine all the clusters from the previous step sepa-
rately for frequent substructures;

3. Use the frequent substructures to form constraints
that the clustering algorithm can use;

4. Repeat steps 1, 2 and 3 until no more new frequent
substructures are found, and thus no more new
constraints will be formed.

In the first step clusters are formed using a hierar-
chical clustering algorithm. This algorithm uses the
distances between each pair of mass spectrogram as
input. In (Ramon & Bruynooghe, 2001) the matching
distance is proposed. This metric measures the dis-
tance between two sets of points. Since a mass spec-
trogram is a set of (z,y) points, the distance between
two mass spectrograms is computed using this metric.

In the next step each cluster is mined for frequent sub-
structures. More specifically, we look for substructures
that occur in many molecules of this cluster, and in few
molecules of the other clusters.

Since we want the clusters to be predictive with respect
to substructures, we will try to improve the clusters
as follows: if a substructure occurs very often in one
cluster and rarely in other clusters, we will push the
clustering process towards finding a clustering where
all molecules containing this substructure are in the
same cluster. We do this by imposing must-link and
cannot-link constraints on the clustering process.

In the following subsections we elaborate on how the
found substructures are used to generate the con-
straints.

2.1. Constraint representation

Frequent substructures mined from molecules from the
same cluster C should ideally be found only in that

particular cluster. If a molecule m in a different clus-
ter contains the same molecular substructure, we can
formulate a ’must-link’ constraint. This constraint
states that this molecule m should be clustered with
the molecules from cluster C' also containing this par-
ticular substructure. As a consequence, must-link con-
straints between m and each molecule of C containing
the substructure can be added.

In a similar vein, if a substructure is very frequent in
cluster C' and not frequent in other clusters, a molecule
m’ in cluster C' that does not contain this substruc-
ture should not be clustered with the other molecules
from C containing the substructure. A cannot-link
constraint between this molecule m’ and cluster C can
be added. This means that the molecule m’ cannot
be clustered with any other molecule in C' that does
contain this frequent substructure.

2.2. Constraint generation

Constraints as described in section 2.1 can only be
generated if the following condition holds:

VCy, k # j : freqq, (SSi;) < freqe, (SSi;) (1)

This condition states that a frequent substructure S.S;;
from cluster C; should be omnipresent in cluster Cj
and not frequent at all in all other clusters Cj. If
this condition holds for both absolute and relative fre-
quency, then substructure SS;; is a valuable candi-
date to generate the must-link and the cannot-link
constraints.

2.3. Use of the clustering for prediction

Once clusters have been formed that are coherent with
respect to mass spectra as well as (the relevant parts
of the) molecular structure, we can use such clusters
for predicting (part of ) the structure of a molecule.

First the molecule is assigned to the cluster where its
mass spectrogram fits best. Next the substructures
that frequently occur in this cluster are predicted to
be part of the molecular structure. This process works
best if the clusters are indeed coherent with respect to
the mass spectrograms as well as the molecular struc-
ture.

3. Experiments
3.1. Data set

A data set of 5031 molecules was compiled from
(SDBS-Web, 2007). For each molecule, the name,
molecular formula, weight, mass spectrogram and the
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structure are stored in a database. Molecular struc-
tures are stored in the SMILES format (Anderson
et al., 1987), which uses ASCII strings to represent
unambiguously the molecule’s structure.

3.2. Experimental settings

In this preliminary experiment, a subset of 50
molecules was randomly selected from the database.
The program was implemented in Java. The frequent
subgraph mining algorithm is part of ParMol (Meinl
et al., 2006), a Java library containing several graph
mining algorithms and a parser to convert SMILES
into graph representation. The graph mining algo-
rithm used in this experiment is gSpan (Yan & Han,
2002) .

Each cluster was mined for substructures occuring in
at least 50 % of the molecules in this cluster. Next
the experiment was repeated with a support of at
least 80 %. For each of these frequent substructures,
the following condition was used to determine if this
substructure was a good candidate to generate con-
straints:

Z freqe, (55i;) < freqe, (S5i;) (2)

k£

If the absolute frequency of SS;; in cluster C} is higher
than the sum of the absolute frequencies in all other
clusters, then this substructure is used to formulate
must-link and cannot-link constraints.

3.3. Results

After five (50% support) and seven (80% support) it-
erations no more new constraints were generated and
the process converged to a solution. Both solutions
contained seven clusters. Since most molecules of each
cluster contained similar substructures, each cluster
could be labeled, see table 1 . The resulting cluster
solutions are similar in terms of labeling.This labeling
was not possible when the molecules were clustered
solely based on the mass spectrograms.

These clustering solution were then used to predict
substructures of a test set of unseen molecules. An
unseen molecule m is assigned to the cluster of m/,
the molecule whose mass spectrogram is closest to the
mass spectrogram of m. The frequent substructures
of the assigned cluster are then predicted as substruc-
tures of m.

In table 2, the number of found frequent substructures
and the number of assigned molecules are listed for all
clusters. For each frequent substructure SS;; in cluster

Table 1. Cluster solution with constraints

CLUSTER MOLECULES

0 1 SMALL MOLECULE

1 SMALL MOLECULES WITH

AT LEAST 1 DOUBLE BOND
BENZENE RING

LONG CARBON CHAIN

MEDIUM ALCOHOL

SMALL RING OR ALDEHYDE
BENZENE RING WITH SMALL CHAIN

O U W N

Table 2. Summary of prediction

CLUSTER FREQ. SUB- ASSIGNED AVG SUB-
STRUCTURES MOLECULES STRUCTURES

50 % SUPPORT

0 1 0 0

1 3 5 2

2 2 11 1.63

3 7 4 1.25

4 3 0 0

5 2 4 1.75

6 3 26 2.15
80 % SUPPORT

0 1 0 0

1 1 5 0.6

2 1 7 0.85

3 2 26 1.5

4 3 0 0

5 2 7 1.71

6 1 5 1

C}, the molecules that are assigned to C; and contain
SS;; are counted. These counts are then averaged over
all assigned molecules (last column of the table).

In the experiment with 50% support, the average num-
ber of frequent substructures of the assigned molecules
are rather high with exception of cluster 3. In the sec-
ond experiment (80% support), the average number of
frequent substructures is still quite high for all clusters
but the number of frequent substructures decreased.

4. Conclusion

We have presented work in progress that aims at pre-
dicting molecular substructures of molecules based on
their mass spectrograms. We use a variant of pre-
dictive clustering that relies on frequent substructure
discovery and constraint based clustering.

Future work includes (1) the use of alternative sub-
structure miners, preferably systems that find struc-
tures that are frequent in one cluster and infrequent in
other clusters, rather than just finding frequent struc-
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tures (and filtering those in a second step); (2) more
experiments to investigate how parameters (eg. the
minimal frequency of the mined substructures in each
cluster) influence the process, and (3) a more quanti-
tative evaluation of the cluster solution, more specif-
ically, measuring how accurately it can predict the
molecular structure of a new instance from its mass
spectrogram (what percentage of the molecule’s struc-
ture is predicted on average, and how many predicted
substructures are effectively part of the molecule).
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