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1. Introduction

Recently, we proposed a structured prediction ap-
proach (Gärtner & Vembu, 2008) that does not de-
pend on a separation oracle for training. The resulting
formulation was an unconstrained polynomially-sized
quadratic program. Our approach can be trained in
polynomial time even in applications such as predict-
ing dicycles or posets, where separation is a computa-
tionally hard problem. In this work, we investigate the
scalability of our approach with online optimisation.

Structured prediction models (Taskar et al., 2005;
Tsochantaridis et al., 2005) infer a joint scoring func-
tion on input-output pairs and, for a given input, pre-
dict the output that maximises this function. These al-
gorithms make different assumptions in order to ensure
polynomial time training. For example, the approach
of (Taskar et al., 2005) can be trained in polynomial
time only if deciding whether no output with a score
higher than a given output exists (optimality) is in
NP. Often stronger assumptions are needed (Tsochan-
taridis et al., 2005) and in applications considered thus
far these do hold. For several applications such as pre-
dicting dicycles in a graph or predicting posets, op-
timality is coNP-complete and these assumptions do
not hold (unless NP=coNP). Our approach (Gärtner
& Vembu, 2008) can be trained in polynomial time
even in cases where optimality is coNP-complete.

There has been recent work on online structured pre-
diction. Whilst the aproach of (Bordes et al., 2007)
can be trained on non-linear models, the subgradient
method (Ratliff et al., 2007) is applicable only to lin-
ear models. These approaches cannot be trained in
polynomial time for applications where optimality is
coNP-complete.

2. Count-based Training

We briefly describe the stuctured output learning al-
gorithm proposed in (Gärtner & Vembu, 2008). We

consider structured output prediction with the follow-
ing ingredients: The input space is a set X with a
positive definite kernel kX : X × X → R. The output
space Y is a set system (Σ,Y), where Σ is some fixed
set, with a positive definite kernel kY : Y × Y → R
such as the intersection kernel kY(z, z′) = |z∩z′|. The
goal is to infer an ordering of Y ⊆ 2Σ for each x ∈ X .
The scoring function is h ∈ H = HX ⊗ HY where ⊗
denotes the tensor product and HX ,HY are the RKHS
of kX , kY respectively. Note that the reproducing ker-
nel of H is then k[(x, y), (x′, y′)] = kX (x, x′)kY(y, y′).
The training set is {xi, Yi}i∈[[n]] ⊆ X × 2Y , where
[[n]] = {1, . . . , n}. Often in literature only |Yi| = 1 is
considered; in this case we write {xi, yi}i∈[[n]] ⊆ X ×Y.
For each xi, we aim at ordering y ∈ Yi before z ∈ Y\Yi.

The optimisation problem for learning structured out-
puts is given as

h∗ = argmin
h∈H

λ‖h‖2 +
∑

i∈[[n]]

R(h, i) (1)

where R : H × [[n]] → R is the empirical risk on a
training instance, λ ≥ 0 is the regularisation parame-
ter, and [[n]] = {1, ..., n}. Existing margin-based struc-
tured output learning algorithms (Taskar et al., 2005;
Tsochantaridis et al., 2005) typically minimise the
hinge loss for classification and make different assump-
tions in order to cope up with the exponentially large
output space which results in an exponential number
of constraints in the optimisation problem. We take
a different approach to arrive at a polynomially-sized
unconstrained QP to solve (1). Instead of minimis-
ing the hinge loss, we minimse an upper bound on the
auc-loss (number of misordered pairs) given as

Rtexp(h, i) =
∑
y∈Yi

∑
z∈Y\Yi

texp [h(xi, z)− h(xi, y)]

where texp(a) = 1+a+ 1
2a2. This results in simplifying

the problem (1). The representer theorem for struc-
tured output states that there is a minimiser h∗ of (1)
with h∗ ∈ F = span{k[(xi, z), (·, ·)] | i ∈ [[n]], z ∈ Y}.
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As usually |Y| is exponential in the input of our learn-
ing problem, we can not optimise over functions in
F directly. If, however, span{kY(z, ·) | z ∈ Y} has
a basis u1(·), . . . um(·) with m polynomial in the in-
put of our learning problem it is sufficient to optimise
over nm variables only, as span{kX (xi, ·)⊗ ul(·) | i ∈
[[n]], l ∈ [[m]]} = F . We thus have

fα(x, z) =
∑

i∈[[n]],l∈[[m]]

αilkX (xi, x) 〈ul(·), kY(z, ·)〉 .

We now consider finite dimensional output embed-
dings in which we have a φ : Y → Rd with kY(y, y′) =
〈φ(y), φ(y′)〉 and the vector Φ =

∑
z φ(z) as well as

the matrix C =
∑

z φ>(z)φ(z) can be computed in
polynomial time for all of Y or a relaxation Ỹ. In this
case the optimisation problem can be solved in poly-
nomial time. Let Y be the matrix Y ∈ Rn×d such that
Yi· =

∑
y∈Yi

φ>(y) and K be the kernel matrix such
that Kij = kX (xi, xj). Let ◦ denote the Hadamard
product, let tr denote the trace operator, and let diag
be the operator that maps a square matrix to the col-
umn vector corresponding to its diagonal as well as a
column vector to the corresponding diagonal matrix.
We obtain the optimisation problem

argmin
α∈Rd×n

λ trαKα> +
1
2

trKα>CαK

+ 2Φ>αK1 +
|Y|
2
‖diag(Y αK)‖2

− 2|Y| trY αK − Φ>αKdiag(Y αK) .

(2)

that can be solved using conjugate gradient methods.

3. Online Optimisation

The optimisation problem (2) can be solved using on-
line algorithms like stochastic gradient descent (SGD)
and stochastic meta descent (SMD). In this work, we
derive SGD updates in RKHS H.

3.1. Stochastic Gradient Descent

At iteration t, let Kt = K[[t]][[t]] ∈ Rt×t, kt = (K[[t]][[t]]).t,
yt = Yt., and let αt ∈ Rd×t be the parameter ma-
trix. In the following, we omit the subscript t. The
instantaneous objective of 2 can be written as

argmin
α∈Rd×t

λ trαKα> +
1
2
k>α>Cαk + 2Φ>αk

+
|Y|
2

(yαk)2 − 2|Y|yαk − Φ>αkyαk

(3)

with gradient ∇,

2λαK + Cαkk> + 2Φk> + |Y|yαky>k>

−2|Y|y>k> − Φk>yαk − Φ>αky>k> .
(4)

With step size ηt, we update α← α− ηt∇.

3.2. Kernel Expansion Coefficients

As the function (3) is minimised in RKHS, the param-
eter matrix α grows incrementally with time by adding
a single row in every iteration. In order to speed up
computations, we truncate all parameters that were
updated in the past beyond time τ . This is justified
for regularised loss functions because at every itera-
tion, αi. with i < t is shrunk by a factor (1 − ληt)
and therefore the contribution of old parameters in
the computation of the kernel expansion decreases
with time (Vishwanathan et al., 2006). We use this
simple technique to speed up computations in our ex-
periments.

3.3. Step Size Adaptation

The step size plays an important role in the conver-
gence of stochastic approximation techniques and has
been the focus of recent research (Vishwanathan et al.,
2006). We set the step size ηt = p

λt where p is a pa-
rameter that has to be fine tuned to obtain good per-
formance. A better way to set the step size would be
to consider SMD updates .

4. Applications and Experiments

4.1. Multilabel Prediction

We consider multilabel (Y = 2Σ) prediction with
φ : Y → RΣ defined as φi(z) = 1 if z = i and 0
otherwise. Here Φ = 2|Σ|−11, C = 2|Σ|−2I + 2|Σ|−21.
Exact decoding is very simple. For a given (test) in-
stance x let κ ∈ Rn with κi = kX (xi, x) such that
ŷ = {e ∈ Σ | [ακ]e ≥ 0}.

We trained a simple multilabel classification model to
learns the identity function f : {0, 1}d → {0, 1}d. The
goal was to compare batch and online training in terms
of the final objective value in (2) and training time. We
also studied the effects of the truncation parameter τ
on speed and final objective. In our experiments, we
trained SGD in a single pass of the data set.

Figure 1 summarises the results for multilabel classi-
fication on an artificial data set with 5 features and
labels. In the left figure, we set the truncation param-
eter τ to 0.15 × n, where n is the number of training
instances. We see that the final solution of SGD is
comparable to that of NCG, and the speed up achieved
by SGD is apparent for large data sets. The effect of τ
on training time and objective is also shown in the fig-
ure (center). The training time of SGD increases with
τ and attains the training time of NCG at around 19%
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Figure 1. Left: Comparison of SGD and NCG on multilabel classification. Center: Effect of τ on training time and final
objective value on multilabel classification. Right: Comparison of SGD and NCG on dicycle policy estimation.

of n. Beyond this value, we found that SGD was tak-
ing longer time than NCG. This underlines the effect
of τ when performing SGD updates in RKHS.

4.2. Dicycle Policy Estimation

We consider digraphs Σ = {(u, v) | u, v ∈ [[N ]] ∧
u 6= v} with Y ⊆ 2Σ such that all y ∈ Y form
a directed cycle ([[N ]], y). Let φ : Y → RΣ with
φ(uv)(z) = 1 if (u, v) ∈ z ∧ (v, u) 6∈ z, φ(uv)(z) = −1
if (v, u) ∈ z ∧ (u, v) 6∈ z, and φ(uv)(z) = 0 oth-
erwise. Then we have Φ = 0. With b(p, q, r) =∑N

i=p

(
N − q
i− q

)
(i − r)! we find |Y| = b(2, 0, 1) and

C(u,v),(u′,v′) = (2σ[{u, u′}+{v, v′}−{u, v′}−{v, u′}]−
1) · b(3, 2− |{u, v} ∩ {u, v′}|, 2− |{u, v} ∩ {u, v′}|). Ex-
act decoding is hard in this case, but one can obtain
approximation guarantees (Gärtner & Vembu, 2008).

We simulate the problem of predicting the cyclic tour
of different people. We assume there is a hidden policy
for each person and each person takes the route that
(approximately) maximises the reward of the route.
The learned function is linear in the output space
(f(xi, y) =

〈
f i

α, φ(y)
〉
) and for testing we can check

how well f i
α approximates the hidden policy in the

test (i ∈ [[n′]]) set. The data is constructed as fol-
lows: (i) generate uniformly at random M matri-
ces A(i) ∈ RΣ×Σ with entries in the interval [−1, 1]
and A

(i)
uv = −A

(i)
vu; (ii) generate uniformly (n + n′)M

random numbers between 0 and 1 to form the in-
puts xi ∈ RM ; (iii) create the output structures
yi ≈ argmaxy∈Y

∑
(u,v)∈y,j∈[[M ]] xijA

(j)
uv for training,

that is i ∈ [[n]]. On the test set we measure the per-
formance of our algorithm by cosine similarity of the
learned policy and the true policy.

We trained SGD and NCG on data sets of varying size
from 100 to 5000 with M = 15 and Σ = 10. We fixed
τ to 500 kernel expansion coefficients. Figure 1 (right)
shows a plot of final objective versus training time of
SGD and NCG on the different data sets. The plot

shows that NCG takes a much longer time to attain
the same final objective value as SGD. Note that as
we perform single pass training, with fixed amounts of
training instances NCG attains a smaller value of the
objective function than SGD. However, as SGD can
deal with much more training instances in the same
time, after a fixed amount of time, SGD attains a
smaller value of the objective function than NCG.

5. Conclusions

We investigated stochastic gradient descent methods
for online training of non-linear structured prediction
models. In future, we will explore SMD updates and
perform large scale training on real world data sets.
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